npvinHnivqn
commited on
Commit
•
8760a40
1
Parent(s):
80d6595
Update README file
Browse files
README.md
CHANGED
@@ -3,197 +3,86 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
## Original result
|
7 |
+
```
|
8 |
+
IoU metric: bbox
|
9 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
|
10 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
|
11 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
|
12 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
13 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
14 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
|
15 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
|
16 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.011
|
17 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.011
|
18 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
19 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
20 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.011
|
21 |
+
```
|
22 |
+
|
23 |
+
## After training result
|
24 |
+
```
|
25 |
+
IoU metric: bbox
|
26 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.008
|
27 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.026
|
28 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.001
|
29 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
30 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
31 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.008
|
32 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.040
|
33 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.049
|
34 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.056
|
35 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
36 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
37 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.056
|
38 |
+
```
|
39 |
+
|
40 |
+
## Config
|
41 |
+
- dataset: NIH
|
42 |
+
- original model: hustvl/yolos-tiny
|
43 |
+
- lr: 0.0001
|
44 |
+
- dropout_rate: 0.1
|
45 |
+
- weight_decay: 10.0
|
46 |
+
- max_epochs: 30
|
47 |
+
- train samples: 885
|
48 |
+
|
49 |
+
## Logging
|
50 |
+
### Training process
|
51 |
+
```
|
52 |
+
{'validation_loss': tensor(6.4845, device='cuda:0'), 'validation_loss_ce': tensor(2.0703, device='cuda:0'), 'validation_loss_bbox': tensor(0.5406, device='cuda:0'), 'validation_loss_giou': tensor(0.8556, device='cuda:0'), 'validation_cardinality_error': tensor(79.9062, device='cuda:0')}
|
53 |
+
{'training_loss': tensor(2.7016, device='cuda:0'), 'train_loss_ce': tensor(0.4314, device='cuda:0'), 'train_loss_bbox': tensor(0.2228, device='cuda:0'), 'train_loss_giou': tensor(0.5781, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3099, device='cuda:0'), 'validation_loss_ce': tensor(0.4543, device='cuda:0'), 'validation_loss_bbox': tensor(0.1610, device='cuda:0'), 'validation_loss_giou': tensor(0.5252, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
54 |
+
{'training_loss': tensor(2.2841, device='cuda:0'), 'train_loss_ce': tensor(0.4562, device='cuda:0'), 'train_loss_bbox': tensor(0.1660, device='cuda:0'), 'train_loss_giou': tensor(0.4990, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3262, device='cuda:0'), 'validation_loss_ce': tensor(0.4318, device='cuda:0'), 'validation_loss_bbox': tensor(0.1678, device='cuda:0'), 'validation_loss_giou': tensor(0.5276, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
55 |
+
{'training_loss': tensor(2.0995, device='cuda:0'), 'train_loss_ce': tensor(0.4676, device='cuda:0'), 'train_loss_bbox': tensor(0.1685, device='cuda:0'), 'train_loss_giou': tensor(0.3948, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2856, device='cuda:0'), 'validation_loss_ce': tensor(0.4396, device='cuda:0'), 'validation_loss_bbox': tensor(0.1619, device='cuda:0'), 'validation_loss_giou': tensor(0.5182, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
56 |
+
{'training_loss': tensor(1.8772, device='cuda:0'), 'train_loss_ce': tensor(0.4828, device='cuda:0'), 'train_loss_bbox': tensor(0.1217, device='cuda:0'), 'train_loss_giou': tensor(0.3929, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2444, device='cuda:0'), 'validation_loss_ce': tensor(0.4270, device='cuda:0'), 'validation_loss_bbox': tensor(0.1613, device='cuda:0'), 'validation_loss_giou': tensor(0.5056, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
57 |
+
{'training_loss': tensor(2.4697, device='cuda:0'), 'train_loss_ce': tensor(0.4485, device='cuda:0'), 'train_loss_bbox': tensor(0.1694, device='cuda:0'), 'train_loss_giou': tensor(0.5871, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3423, device='cuda:0'), 'validation_loss_ce': tensor(0.4061, device='cuda:0'), 'validation_loss_bbox': tensor(0.1712, device='cuda:0'), 'validation_loss_giou': tensor(0.5401, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
58 |
+
{'training_loss': tensor(3.2742, device='cuda:0'), 'train_loss_ce': tensor(0.3894, device='cuda:0'), 'train_loss_bbox': tensor(0.2832, device='cuda:0'), 'train_loss_giou': tensor(0.7344, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.8731, device='cuda:0'), 'validation_loss_ce': tensor(0.4232, device='cuda:0'), 'validation_loss_bbox': tensor(0.2260, device='cuda:0'), 'validation_loss_giou': tensor(0.6598, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
59 |
+
{'training_loss': tensor(2.7366, device='cuda:0'), 'train_loss_ce': tensor(0.4021, device='cuda:0'), 'train_loss_bbox': tensor(0.1880, device='cuda:0'), 'train_loss_giou': tensor(0.6971, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7447, device='cuda:0'), 'validation_loss_ce': tensor(0.4046, device='cuda:0'), 'validation_loss_bbox': tensor(0.2111, device='cuda:0'), 'validation_loss_giou': tensor(0.6423, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
60 |
+
{'training_loss': tensor(3.5912, device='cuda:0'), 'train_loss_ce': tensor(0.4474, device='cuda:0'), 'train_loss_bbox': tensor(0.2692, device='cuda:0'), 'train_loss_giou': tensor(0.8990, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7000, device='cuda:0'), 'validation_loss_ce': tensor(0.3900, device='cuda:0'), 'validation_loss_bbox': tensor(0.2162, device='cuda:0'), 'validation_loss_giou': tensor(0.6146, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
61 |
+
{'training_loss': tensor(3.1424, device='cuda:0'), 'train_loss_ce': tensor(0.4654, device='cuda:0'), 'train_loss_bbox': tensor(0.2374, device='cuda:0'), 'train_loss_giou': tensor(0.7449, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6695, device='cuda:0'), 'validation_loss_ce': tensor(0.4214, device='cuda:0'), 'validation_loss_bbox': tensor(0.2038, device='cuda:0'), 'validation_loss_giou': tensor(0.6146, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
62 |
+
{'training_loss': tensor(3.3901, device='cuda:0'), 'train_loss_ce': tensor(0.3745, device='cuda:0'), 'train_loss_bbox': tensor(0.3009, device='cuda:0'), 'train_loss_giou': tensor(0.7555, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.8418, device='cuda:0'), 'validation_loss_ce': tensor(0.4005, device='cuda:0'), 'validation_loss_bbox': tensor(0.2356, device='cuda:0'), 'validation_loss_giou': tensor(0.6315, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
63 |
+
{'training_loss': tensor(2.1228, device='cuda:0'), 'train_loss_ce': tensor(0.4134, device='cuda:0'), 'train_loss_bbox': tensor(0.1691, device='cuda:0'), 'train_loss_giou': tensor(0.4320, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.8125, device='cuda:0'), 'validation_loss_ce': tensor(0.4067, device='cuda:0'), 'validation_loss_bbox': tensor(0.2164, device='cuda:0'), 'validation_loss_giou': tensor(0.6619, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
64 |
+
{'training_loss': tensor(2.8465, device='cuda:0'), 'train_loss_ce': tensor(0.4752, device='cuda:0'), 'train_loss_bbox': tensor(0.2065, device='cuda:0'), 'train_loss_giou': tensor(0.6694, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.5769, device='cuda:0'), 'validation_loss_ce': tensor(0.4146, device='cuda:0'), 'validation_loss_bbox': tensor(0.1986, device='cuda:0'), 'validation_loss_giou': tensor(0.5845, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
65 |
+
{'training_loss': tensor(3.0633, device='cuda:0'), 'train_loss_ce': tensor(0.4504, device='cuda:0'), 'train_loss_bbox': tensor(0.1999, device='cuda:0'), 'train_loss_giou': tensor(0.8068, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7978, device='cuda:0'), 'validation_loss_ce': tensor(0.4000, device='cuda:0'), 'validation_loss_bbox': tensor(0.2214, device='cuda:0'), 'validation_loss_giou': tensor(0.6452, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
66 |
+
{'training_loss': tensor(2.3091, device='cuda:0'), 'train_loss_ce': tensor(0.4060, device='cuda:0'), 'train_loss_bbox': tensor(0.1832, device='cuda:0'), 'train_loss_giou': tensor(0.4936, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6313, device='cuda:0'), 'validation_loss_ce': tensor(0.4259, device='cuda:0'), 'validation_loss_bbox': tensor(0.2090, device='cuda:0'), 'validation_loss_giou': tensor(0.5803, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
67 |
+
{'training_loss': tensor(2.8676, device='cuda:0'), 'train_loss_ce': tensor(0.4144, device='cuda:0'), 'train_loss_bbox': tensor(0.2126, device='cuda:0'), 'train_loss_giou': tensor(0.6952, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6389, device='cuda:0'), 'validation_loss_ce': tensor(0.4249, device='cuda:0'), 'validation_loss_bbox': tensor(0.2028, device='cuda:0'), 'validation_loss_giou': tensor(0.6000, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
68 |
+
{'training_loss': tensor(2.8933, device='cuda:0'), 'train_loss_ce': tensor(0.4095, device='cuda:0'), 'train_loss_bbox': tensor(0.2215, device='cuda:0'), 'train_loss_giou': tensor(0.6881, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7148, device='cuda:0'), 'validation_loss_ce': tensor(0.4285, device='cuda:0'), 'validation_loss_bbox': tensor(0.2068, device='cuda:0'), 'validation_loss_giou': tensor(0.6262, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
69 |
+
{'training_loss': tensor(2.8105, device='cuda:0'), 'train_loss_ce': tensor(0.4766, device='cuda:0'), 'train_loss_bbox': tensor(0.2018, device='cuda:0'), 'train_loss_giou': tensor(0.6625, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6955, device='cuda:0'), 'validation_loss_ce': tensor(0.4442, device='cuda:0'), 'validation_loss_bbox': tensor(0.2032, device='cuda:0'), 'validation_loss_giou': tensor(0.6176, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
70 |
+
{'training_loss': tensor(2.9315, device='cuda:0'), 'train_loss_ce': tensor(0.5202, device='cuda:0'), 'train_loss_bbox': tensor(0.2002, device='cuda:0'), 'train_loss_giou': tensor(0.7052, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.9419, device='cuda:0'), 'validation_loss_ce': tensor(0.4325, device='cuda:0'), 'validation_loss_bbox': tensor(0.2266, device='cuda:0'), 'validation_loss_giou': tensor(0.6881, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
71 |
+
{'training_loss': tensor(2.4729, device='cuda:0'), 'train_loss_ce': tensor(0.4755, device='cuda:0'), 'train_loss_bbox': tensor(0.1909, device='cuda:0'), 'train_loss_giou': tensor(0.5214, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7052, device='cuda:0'), 'validation_loss_ce': tensor(0.4322, device='cuda:0'), 'validation_loss_bbox': tensor(0.2143, device='cuda:0'), 'validation_loss_giou': tensor(0.6007, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
72 |
+
{'training_loss': tensor(2.7326, device='cuda:0'), 'train_loss_ce': tensor(0.3718, device='cuda:0'), 'train_loss_bbox': tensor(0.2027, device='cuda:0'), 'train_loss_giou': tensor(0.6737, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7806, device='cuda:0'), 'validation_loss_ce': tensor(0.4508, device='cuda:0'), 'validation_loss_bbox': tensor(0.2179, device='cuda:0'), 'validation_loss_giou': tensor(0.6201, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
73 |
+
{'training_loss': tensor(2.5336, device='cuda:0'), 'train_loss_ce': tensor(0.4251, device='cuda:0'), 'train_loss_bbox': tensor(0.2083, device='cuda:0'), 'train_loss_giou': tensor(0.5336, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.9040, device='cuda:0'), 'validation_loss_ce': tensor(0.4602, device='cuda:0'), 'validation_loss_bbox': tensor(0.2258, device='cuda:0'), 'validation_loss_giou': tensor(0.6575, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
74 |
+
{'training_loss': tensor(2.5256, device='cuda:0'), 'train_loss_ce': tensor(0.4589, device='cuda:0'), 'train_loss_bbox': tensor(0.2075, device='cuda:0'), 'train_loss_giou': tensor(0.5147, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6811, device='cuda:0'), 'validation_loss_ce': tensor(0.4428, device='cuda:0'), 'validation_loss_bbox': tensor(0.2018, device='cuda:0'), 'validation_loss_giou': tensor(0.6145, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
75 |
+
{'training_loss': tensor(2.0975, device='cuda:0'), 'train_loss_ce': tensor(0.4765, device='cuda:0'), 'train_loss_bbox': tensor(0.1326, device='cuda:0'), 'train_loss_giou': tensor(0.4790, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7996, device='cuda:0'), 'validation_loss_ce': tensor(0.4371, device='cuda:0'), 'validation_loss_bbox': tensor(0.2147, device='cuda:0'), 'validation_loss_giou': tensor(0.6446, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
76 |
+
{'training_loss': tensor(2.4838, device='cuda:0'), 'train_loss_ce': tensor(0.4119, device='cuda:0'), 'train_loss_bbox': tensor(0.1899, device='cuda:0'), 'train_loss_giou': tensor(0.5612, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7380, device='cuda:0'), 'validation_loss_ce': tensor(0.4168, device='cuda:0'), 'validation_loss_bbox': tensor(0.2185, device='cuda:0'), 'validation_loss_giou': tensor(0.6143, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
77 |
+
{'training_loss': tensor(2.4045, device='cuda:0'), 'train_loss_ce': tensor(0.4238, device='cuda:0'), 'train_loss_bbox': tensor(0.1777, device='cuda:0'), 'train_loss_giou': tensor(0.5461, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7113, device='cuda:0'), 'validation_loss_ce': tensor(0.4276, device='cuda:0'), 'validation_loss_bbox': tensor(0.2102, device='cuda:0'), 'validation_loss_giou': tensor(0.6164, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
78 |
+
{'training_loss': tensor(3.2236, device='cuda:0'), 'train_loss_ce': tensor(0.3068, device='cuda:0'), 'train_loss_bbox': tensor(0.2612, device='cuda:0'), 'train_loss_giou': tensor(0.8055, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7548, device='cuda:0'), 'validation_loss_ce': tensor(0.4379, device='cuda:0'), 'validation_loss_bbox': tensor(0.2177, device='cuda:0'), 'validation_loss_giou': tensor(0.6142, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
79 |
+
{'training_loss': tensor(3.0097, device='cuda:0'), 'train_loss_ce': tensor(0.4255, device='cuda:0'), 'train_loss_bbox': tensor(0.2340, device='cuda:0'), 'train_loss_giou': tensor(0.7071, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7268, device='cuda:0'), 'validation_loss_ce': tensor(0.4118, device='cuda:0'), 'validation_loss_bbox': tensor(0.2167, device='cuda:0'), 'validation_loss_giou': tensor(0.6157, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
80 |
+
{'training_loss': tensor(2.2934, device='cuda:0'), 'train_loss_ce': tensor(0.4336, device='cuda:0'), 'train_loss_bbox': tensor(0.1805, device='cuda:0'), 'train_loss_giou': tensor(0.4787, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7026, device='cuda:0'), 'validation_loss_ce': tensor(0.4199, device='cuda:0'), 'validation_loss_bbox': tensor(0.2155, device='cuda:0'), 'validation_loss_giou': tensor(0.6026, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
81 |
+
{'training_loss': tensor(2.2257, device='cuda:0'), 'train_loss_ce': tensor(0.4414, device='cuda:0'), 'train_loss_bbox': tensor(0.1801, device='cuda:0'), 'train_loss_giou': tensor(0.4420, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.8028, device='cuda:0'), 'validation_loss_ce': tensor(0.4215, device='cuda:0'), 'validation_loss_bbox': tensor(0.2218, device='cuda:0'), 'validation_loss_giou': tensor(0.6361, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
82 |
+
{'training_loss': tensor(3.2935, device='cuda:0'), 'train_loss_ce': tensor(0.4851, device='cuda:0'), 'train_loss_bbox': tensor(0.2494, device='cuda:0'), 'train_loss_giou': tensor(0.7807, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.7375, device='cuda:0'), 'validation_loss_ce': tensor(0.4192, device='cuda:0'), 'validation_loss_bbox': tensor(0.2163, device='cuda:0'), 'validation_loss_giou': tensor(0.6184, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
83 |
+
```
|
84 |
+
|
85 |
+
## Examples
|
86 |
+
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}
|
87 |
+
|
88 |
+
![Example](./example.png)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|