File size: 1,818 Bytes
5aca27c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602e68d
5aca27c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602e68d
 
 
 
 
5aca27c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- tts
- generated_from_trainer
datasets:
- microsoft/speecht5_tts
model-index:
- name: SpeechT5 Technical English
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SpeechT5 Technical English

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the TTS_English_Technical_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4593

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.7206        | 0.3581 | 100  | 0.5136          |
| 4.3283        | 0.7162 | 200  | 0.4862          |
| 4.1418        | 1.0743 | 300  | 0.4731          |
| 4.0325        | 1.4324 | 400  | 0.4631          |
| 3.9652        | 1.7905 | 500  | 0.4593          |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1