Mehtap commited on
Commit
f50c5b3
1 Parent(s): c525eed

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - tr
4
+ license: apache-2.0
5
+ tags:
6
+ - hf-asr-leaderboard
7
+ - generated_from_trainer
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: base Turkish Whisper (bTW)
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # base Turkish Whisper (bTW)
19
+
20
+ This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.1451
23
+ - Wer: 1.0165
24
+ - Cer: 0.7894
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 1e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 42
47
+ - gradient_accumulation_steps: 4
48
+ - total_train_batch_size: 64
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 500
52
+ - training_steps: 1000
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
58
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
59
+ | 1.6901 | 4.54 | 100 | 1.3928 | 0.8093 | 0.4264 |
60
+ | 0.6163 | 9.09 | 200 | 0.8885 | 0.7907 | 0.4532 |
61
+ | 0.2692 | 13.63 | 300 | 0.8719 | 0.7823 | 0.4474 |
62
+ | 0.1148 | 18.18 | 400 | 0.9275 | 0.7393 | 0.4280 |
63
+ | 0.04 | 22.72 | 500 | 1.0308 | 0.8162 | 0.5241 |
64
+ | 0.0114 | 27.27 | 600 | 1.0885 | 0.9666 | 0.7902 |
65
+ | 0.0051 | 31.81 | 700 | 1.1159 | 0.9594 | 0.6967 |
66
+ | 0.0036 | 36.36 | 800 | 1.1301 | 1.0451 | 0.7819 |
67
+ | 0.0031 | 40.9 | 900 | 1.1415 | 1.0496 | 0.8072 |
68
+ | 0.0028 | 45.45 | 1000 | 1.1451 | 1.0165 | 0.7894 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.26.0
74
+ - Pytorch 1.12.0+cu102
75
+ - Datasets 2.9.0
76
+ - Tokenizers 0.13.2