File size: 2,183 Bytes
0fe5cbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
language:
- tr
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: base Turkish Whisper (bTW)
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# base Turkish Whisper (bTW)

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8564
- Wer: 1.2482
- Cer: 0.7381

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 1.6604        | 2.86  | 100  | 1.9378          | 1.1296 | 0.6334 |
| 0.6453        | 5.71  | 200  | 1.4655          | 0.9878 | 0.5974 |
| 0.3912        | 8.57  | 300  | 1.4669          | 1.2543 | 0.7557 |
| 0.2081        | 11.43 | 400  | 1.4622          | 0.8203 | 0.5123 |
| 0.094         | 14.29 | 500  | 1.6592          | 0.9535 | 0.6367 |
| 0.039         | 17.14 | 600  | 1.6946          | 0.9658 | 0.5706 |
| 0.0172        | 20.0  | 700  | 1.8271          | 1.4046 | 1.0027 |
| 0.0086        | 22.86 | 800  | 1.8149          | 1.2567 | 0.7530 |
| 0.0064        | 25.71 | 900  | 1.8478          | 1.2311 | 0.7279 |
| 0.0061        | 28.57 | 1000 | 1.8564          | 1.2482 | 0.7381 |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.13.2