File size: 2,183 Bytes
01f4fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
language:
- tr
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: base Turkish Whisper (bTW)
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# base Turkish Whisper (bTW)

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0034
- Wer: 0.9507
- Cer: 0.9543

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 1.6746        | 2.63  | 100  | 1.4311          | 0.8342 | 0.5210 |
| 0.7117        | 5.26  | 200  | 0.8645          | 0.9008 | 0.5476 |
| 0.4373        | 7.89  | 300  | 0.7748          | 0.7412 | 0.5489 |
| 0.2419        | 10.53 | 400  | 0.7788          | 0.6967 | 0.4042 |
| 0.1359        | 13.16 | 500  | 0.8320          | 0.6912 | 0.5735 |
| 0.055         | 15.79 | 600  | 0.8891          | 0.7571 | 0.7292 |
| 0.0268        | 18.42 | 700  | 0.9250          | 0.7480 | 0.6051 |
| 0.0133        | 21.05 | 800  | 0.9747          | 0.6906 | 0.7730 |
| 0.0088        | 23.68 | 900  | 0.9968          | 0.8349 | 0.8106 |
| 0.0077        | 26.32 | 1000 | 1.0034          | 0.9507 | 0.9543 |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.13.2