File size: 4,562 Bytes
47c6b24
 
 
 
 
 
 
a535013
47c6b24
 
 
35aeae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef677a
35aeae1
 
bef677a
35aeae1
 
 
 
 
 
 
 
 
 
 
 
 
 
bef677a
35aeae1
 
bef677a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e817c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35aeae1
2134985
 
a535013
 
 
47c6b24
 
 
 
2134985
47c6b24
0012339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c6b24
0012339
 
47c6b24
 
 
2134985
 
47c6b24
 
 
 
de294f2
 
47c6b24
 
de294f2
47c6b24
 
 
abbe718
47c6b24
 
 
2134985
 
 
47c6b24
6753f85
07e48b8
6753f85
c8e856b
6753f85
47c6b24
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
- pytorch
base_model: microsoft/phi-2
model-index:
- name: phi-2-basic-maths
  results:
  # AI2 Reasoning Challenge (25-Shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
       - type: acc_norm
         name: normalized accuracy
         value: 55.80
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths

  # HellaSwag (10-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
       - type: acc_norm
         name: normalized accuracy
         value: 71.15
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
      
  # MMLU (5-Shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 47.27
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
      
  # Winogrande (5-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 75.3
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths

  # truthfulqa (0-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthfulqa
      config: truthfulqa
      split: validation
      args:
        num_few_shot: 0
    metrics:
       - type: mc2
         name: mc2
         value: 41.40
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths

datasets:
- gsm8k
language:
- en
pipeline_tag: text-generation
---

# phi-2-basic-maths

This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an [GSM8K dataset](https://huggingface.co/datasets/gsm8k).

## Model Description

The objective of this model is to evaluate Phi-2's ability to provide correct solutions to reasoning problems after fine-tuning. This model was trained using techniques such as TRL, LoRA quantization, and Flash Attention.

To test it, you can use the following code:

```python
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, pipeline

# Specify the model ID
peft_model_id = "Menouar/phi-2-basic-maths"

# Load Model with PEFT adapter
model = AutoPeftModelForCausalLM.from_pretrained(
  peft_model_id,
  device_map="auto",
  torch_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained(peft_model_id)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
```

## Training procedure

The complete training procedure can be found on my [Notebook](https://colab.research.google.com/drive/1mvfoEqc0mwuf8FqrABWt06qwAsU2QrvK). 

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 42
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 84
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 30

### Training results

The training results can be found on [Tensoboard](https://huggingface.co/Menouar/phi-2-basic-maths/tensorboard).

## Evaluation procedure

The complete Evaluation procedure can be found on my [Notebook](https://colab.research.google.com/drive/1xsdxOm-CgZmLAPFgp8iU9lLFEIIHGiUK).

Accuracy: 36.16%

Unclear answers: 7.81%

### Framework versions

- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1