File size: 4,562 Bytes
47c6b24 a535013 47c6b24 35aeae1 bef677a 35aeae1 bef677a 35aeae1 bef677a 35aeae1 bef677a e817c84 35aeae1 2134985 a535013 47c6b24 2134985 47c6b24 0012339 47c6b24 0012339 47c6b24 2134985 47c6b24 de294f2 47c6b24 de294f2 47c6b24 abbe718 47c6b24 2134985 47c6b24 6753f85 07e48b8 6753f85 c8e856b 6753f85 47c6b24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
- pytorch
base_model: microsoft/phi-2
model-index:
- name: phi-2-basic-maths
results:
# AI2 Reasoning Challenge (25-Shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
name: normalized accuracy
value: 55.80
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
# HellaSwag (10-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
name: normalized accuracy
value: 71.15
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
# MMLU (5-Shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 47.27
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
# Winogrande (5-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 75.3
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
# truthfulqa (0-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthfulqa
config: truthfulqa
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
name: mc2
value: 41.40
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
datasets:
- gsm8k
language:
- en
pipeline_tag: text-generation
---
# phi-2-basic-maths
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an [GSM8K dataset](https://huggingface.co/datasets/gsm8k).
## Model Description
The objective of this model is to evaluate Phi-2's ability to provide correct solutions to reasoning problems after fine-tuning. This model was trained using techniques such as TRL, LoRA quantization, and Flash Attention.
To test it, you can use the following code:
```python
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, pipeline
# Specify the model ID
peft_model_id = "Menouar/phi-2-basic-maths"
# Load Model with PEFT adapter
model = AutoPeftModelForCausalLM.from_pretrained(
peft_model_id,
device_map="auto",
torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
```
## Training procedure
The complete training procedure can be found on my [Notebook](https://colab.research.google.com/drive/1mvfoEqc0mwuf8FqrABWt06qwAsU2QrvK).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 42
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 84
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 30
### Training results
The training results can be found on [Tensoboard](https://huggingface.co/Menouar/phi-2-basic-maths/tensorboard).
## Evaluation procedure
The complete Evaluation procedure can be found on my [Notebook](https://colab.research.google.com/drive/1xsdxOm-CgZmLAPFgp8iU9lLFEIIHGiUK).
Accuracy: 36.16%
Unclear answers: 7.81%
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 |