File size: 5,825 Bytes
47c6b24
51fddae
 
47c6b24
 
 
 
 
 
a535013
51fddae
 
47c6b24
51fddae
47c6b24
 
35aeae1
51fddae
35aeae1
 
 
 
 
 
 
 
 
 
51fddae
 
 
35aeae1
bef677a
51fddae
 
35aeae1
 
 
 
 
 
 
 
 
51fddae
 
 
35aeae1
bef677a
51fddae
 
bef677a
 
 
 
 
 
 
 
 
 
51fddae
 
 
bef677a
 
51fddae
 
bef677a
 
 
 
 
 
 
 
 
 
51fddae
 
 
bef677a
 
51fddae
 
e817c84
 
 
 
 
 
 
 
 
 
51fddae
 
 
e817c84
 
51fddae
 
fa9cda4
 
 
 
 
 
 
 
 
 
51fddae
 
 
fa9cda4
51fddae
fa9cda4
51fddae
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9cda4
51fddae
47c6b24
 
 
 
2134985
47c6b24
0012339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c6b24
0012339
 
47c6b24
 
 
2134985
 
47c6b24
 
 
 
de294f2
 
47c6b24
 
de294f2
47c6b24
 
 
abbe718
47c6b24
 
 
2134985
 
 
47c6b24
6753f85
07e48b8
6753f85
c8e856b
6753f85
47c6b24
 
 
 
 
 
 
51fddae
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
language:
- en
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
- pytorch
datasets:
- gsm8k
base_model: microsoft/phi-2
pipeline_tag: text-generation
model-index:
- name: phi-2-basic-maths
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 55.8
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 71.15
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.27
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.3
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthfulqa
      config: truthfulqa
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.4
      name: mc2
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 30.7
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.4
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
      name: Open LLM Leaderboard
---

# phi-2-basic-maths

This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an [GSM8K dataset](https://huggingface.co/datasets/gsm8k).

## Model Description

The objective of this model is to evaluate Phi-2's ability to provide correct solutions to reasoning problems after fine-tuning. This model was trained using techniques such as TRL, LoRA quantization, and Flash Attention.

To test it, you can use the following code:

```python
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, pipeline

# Specify the model ID
peft_model_id = "Menouar/phi-2-basic-maths"

# Load Model with PEFT adapter
model = AutoPeftModelForCausalLM.from_pretrained(
  peft_model_id,
  device_map="auto",
  torch_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained(peft_model_id)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
```

## Training procedure

The complete training procedure can be found on my [Notebook](https://colab.research.google.com/drive/1mvfoEqc0mwuf8FqrABWt06qwAsU2QrvK). 

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 42
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 84
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 30

### Training results

The training results can be found on [Tensoboard](https://huggingface.co/Menouar/phi-2-basic-maths/tensorboard).

## Evaluation procedure

The complete Evaluation procedure can be found on my [Notebook](https://colab.research.google.com/drive/1xsdxOm-CgZmLAPFgp8iU9lLFEIIHGiUK).

Accuracy: 36.16%

Unclear answers: 7.81%

### Framework versions

- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Menouar__phi-2-basic-maths)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |53.60|
|AI2 Reasoning Challenge (25-Shot)|55.80|
|HellaSwag (10-Shot)              |71.15|
|MMLU (5-Shot)                    |47.27|
|TruthfulQA (0-shot)              |41.40|
|Winogrande (5-shot)              |75.30|
|GSM8k (5-shot)                   |30.71|