Metal3d commited on
Commit
ab7e819
1 Parent(s): e893b66

- fixes the example
- the number of classes is 20, not 21

Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -21,15 +21,16 @@ I translated the model to ONNX format.
21
 
22
  Get the `deeplabv3p-resnet50-human.onnx` file and use it with ONNXRuntime package.
23
 
24
- The result of `model.run` is a `(1, 1, 512, 512, 21)` tensor:
25
 
26
  - 1: number of output (you can squeeze it)
27
  - 1: batch size (you can squeeze it)
28
  - 512, 512: the size of the image (fixed)
29
- - 21: number of classes, so you can take the `argmax`` of the tensor to get the class of each pixel
30
 
31
  ```python
32
  import onnxruntime
 
33
  from PIL import Image
34
 
35
  img = Image.open(sys.argv[1] if len(sys.argv) > 1 else "image.jpg")
@@ -44,7 +45,7 @@ result = np.array(result[0])
44
  result = result.argmax(axis=3).squeeze(0)
45
 
46
  # get the masks
47
- for i in range(21):
48
  detected = result == i # get the detected pixels for the class i
49
  # detected is a 512, 512 boolean array
50
  mask = np.zeros_like(img)
 
21
 
22
  Get the `deeplabv3p-resnet50-human.onnx` file and use it with ONNXRuntime package.
23
 
24
+ The result of `model.run` is a `(1, 1, 512, 512, 20)` tensor:
25
 
26
  - 1: number of output (you can squeeze it)
27
  - 1: batch size (you can squeeze it)
28
  - 512, 512: the size of the image (fixed)
29
+ - 20: number of classes, so you can take the `argmax`` of the tensor to get the class of each pixel
30
 
31
  ```python
32
  import onnxruntime
33
+ import numpy as np
34
  from PIL import Image
35
 
36
  img = Image.open(sys.argv[1] if len(sys.argv) > 1 else "image.jpg")
 
45
  result = result.argmax(axis=3).squeeze(0)
46
 
47
  # get the masks
48
+ for i in range(20):
49
  detected = result == i # get the detected pixels for the class i
50
  # detected is a 512, 512 boolean array
51
  mask = np.zeros_like(img)