--- license: cc-by-nc-4.0 language: - tr --- # Model Card for Model ID gemma-2b-tr fine-tuned with Turkish Instruction-Response pairs. ## Model Details ### Model Description - **Language(s) (NLP):** Turkish, English - **License:** Creative Commons Attribution Non Commercial 4.0 - **Finetuned from model [optional]:** gemma-2b-tr (https://huggingface.co/Metin/gemma-2b-tr) ## Uses The model is designed for Turkish instruction following and question answering. Its current response quality is limited, likely due to the small instruction set and model size. It is not recommended for real-world applications at this stage. ## How to Get Started with the Model ```Python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Metin/gemma-2b-tr-inst") model = AutoModelForCausalLM.from_pretrained("Metin/gemma-2b-tr-inst") system_prompt = "You are a helpful assistant. Always reply in Turkish." instruction = "Ankara hangi ülkenin başkentidir?" prompt = f"{system_prompt} [INST] {instruction} [/INST]" input_ids = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` As it can be seen from the above example instructions should be framed within the following structure: SYSTEM_PROMPT [INST] \ [/INST] ## Training Details ### Training Data - Dataset: Turkish instructions from the Aya dataset (https://huggingface.co/datasets/CohereForAI/aya_dataset) - Dataset size: ~550K Token or ~5K instruction-response pair. ### Training Procedure #### Training Hyperparameters - **Adapter:** QLoRA - **Epochs:** 1 - **Context length:** 1024 - **LoRA Rank:** 32 - **LoRA Alpha:** 32 - **LoRA Dropout:** 0.05