File size: 1,652 Bytes
0eb13e3 f3be38d 0eb13e3 f3be38d 3c32f43 f3be38d 1776ce3 f3be38d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: cc-by-nc-4.0
language:
- tr
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
gemma-2b fine-tuned for the task of Turkish text generation.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Language(s) (NLP):** Turkish, English
- **License:** Creative Commons Attribution Non Commercial 4.0 (Chosen due to the use of restricted/gated datasets.)
- **Finetuned from model [optional]:** gemma-2b (https://huggingface.co/google/gemma-2b)
## Uses
The model is specifically designed for Turkish text generation. It is not suitable for instruction-following or question-answering tasks.
## Restrictions
Gemma is provided under and subject to the Gemma Terms of Use found at ai.google.dev/gemma/terms
Please refer to the gemma use restrictions before start using the model.
https://ai.google.dev/gemma/terms#3.2-use
## How to Get Started with the Model
```Python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Metin/gemma-2b-tr")
model = AutoModelForCausalLM.from_pretrained("Metin/gemma-2b-tr")
prompt = "Bugün sinemaya gidemedim çünkü"
input_ids = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
## Training Details
### Training Data
- Dataset size: ~190 Million Token or 100K Document
- Dataset content: Web crawl data
### Training Procedure
#### Training Hyperparameters
- **Adapter:** QLoRA
- **Epochs:** 1
- **Context length:** 1024
- **LoRA Rank:** 32
- **LoRA Alpha:** 32
- **LoRA Dropout:** 0.05 |