Text Generation
Safetensors
English
Russian
conversational
MexIvanov commited on
Commit
f5768e8
1 Parent(s): 60e0719

Upload 15 files

Browse files
README.md CHANGED
@@ -1,3 +1,238 @@
1
  ---
2
- license: mit
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: HuggingFaceH4/zephyr-7b-beta
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: QuantizationMethod.BITS_AND_BYTES
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.2
220
+ ## Training procedure
221
+
222
+
223
+ The following `bitsandbytes` quantization config was used during training:
224
+ - quant_method: QuantizationMethod.BITS_AND_BYTES
225
+ - load_in_8bit: False
226
+ - load_in_4bit: True
227
+ - llm_int8_threshold: 6.0
228
+ - llm_int8_skip_modules: None
229
+ - llm_int8_enable_fp32_cpu_offload: False
230
+ - llm_int8_has_fp16_weight: False
231
+ - bnb_4bit_quant_type: nf4
232
+ - bnb_4bit_use_double_quant: False
233
+ - bnb_4bit_compute_dtype: float16
234
+
235
+ ### Framework versions
236
+
237
+
238
+ - PEFT 0.6.2
adapter_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "HuggingFaceH4/zephyr-7b-beta",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 64,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "v_proj",
20
+ "q_proj"
21
+ ],
22
+ "task_type": "CAUSAL_LM"
23
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42f2b9791a38bca4cab66df0b594b134df08068e68d11d6ef95b217f9013cbc1
3
+ size 109098378
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f46722242703fad2f636f7be221a05a7aa8636f5eb699f22a281ab0609775d4
3
+ size 218211962
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:049c26b844b79121ddd8379f7f69194e63f6fbf6aa007eeac0c66f17eebb8893
3
+ size 888
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e18a37b92d8480fc7a2ebab431f1aafd151a854413733ca47354bc77b1e06e6
3
+ size 14768
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24d1d70a3d1500b0aa278bd5164952bd7a26a3c26fe2d134b2e2bb5a7742794e
3
+ size 14768
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47cdf404d57c885d338f40209feb89ea11ba38642c0d4be28a92c90d20453a55
3
+ size 14768
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:112a137ea22fe0bd6309f54c81308456c7645deffb96cfa7de06c9946947656e
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "additional_special_tokens": [
29
+ "<unk>",
30
+ "<s>",
31
+ "</s>"
32
+ ],
33
+ "bos_token": "<s>",
34
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "</s>",
37
+ "legacy": true,
38
+ "model_max_length": 1024,
39
+ "pad_token": "</s>",
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "truncation_side": "left",
44
+ "unk_token": "<unk>",
45
+ "use_default_system_prompt": true
46
+ }
trainer_state.json ADDED
@@ -0,0 +1,1073 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.4947710931301117,
3
+ "best_model_checkpoint": "zephyr_7B_ruPython/checkpoint-3466",
4
+ "epoch": 1.9997115245925285,
5
+ "eval_steps": 500,
6
+ "global_step": 3466,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 7.692307692307694e-06,
14
+ "loss": 1.0975,
15
+ "step": 20
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 1.5384615384615387e-05,
20
+ "loss": 1.083,
21
+ "step": 40
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 2.307692307692308e-05,
26
+ "loss": 1.0227,
27
+ "step": 60
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 3.0769230769230774e-05,
32
+ "loss": 0.9524,
33
+ "step": 80
34
+ },
35
+ {
36
+ "epoch": 0.06,
37
+ "learning_rate": 3.846153846153846e-05,
38
+ "loss": 0.8904,
39
+ "step": 100
40
+ },
41
+ {
42
+ "epoch": 0.07,
43
+ "learning_rate": 4.615384615384616e-05,
44
+ "loss": 0.8482,
45
+ "step": 120
46
+ },
47
+ {
48
+ "epoch": 0.08,
49
+ "learning_rate": 5.384615384615385e-05,
50
+ "loss": 0.8015,
51
+ "step": 140
52
+ },
53
+ {
54
+ "epoch": 0.09,
55
+ "learning_rate": 6.153846153846155e-05,
56
+ "loss": 0.8032,
57
+ "step": 160
58
+ },
59
+ {
60
+ "epoch": 0.1,
61
+ "learning_rate": 6.923076923076924e-05,
62
+ "loss": 0.7839,
63
+ "step": 180
64
+ },
65
+ {
66
+ "epoch": 0.12,
67
+ "learning_rate": 7.692307692307693e-05,
68
+ "loss": 0.7964,
69
+ "step": 200
70
+ },
71
+ {
72
+ "epoch": 0.13,
73
+ "learning_rate": 8.461538461538461e-05,
74
+ "loss": 0.7531,
75
+ "step": 220
76
+ },
77
+ {
78
+ "epoch": 0.14,
79
+ "learning_rate": 9.230769230769232e-05,
80
+ "loss": 0.7508,
81
+ "step": 240
82
+ },
83
+ {
84
+ "epoch": 0.15,
85
+ "learning_rate": 0.0001,
86
+ "loss": 0.7531,
87
+ "step": 260
88
+ },
89
+ {
90
+ "epoch": 0.16,
91
+ "learning_rate": 0.0001076923076923077,
92
+ "loss": 0.7543,
93
+ "step": 280
94
+ },
95
+ {
96
+ "epoch": 0.17,
97
+ "learning_rate": 0.00011538461538461538,
98
+ "loss": 0.7426,
99
+ "step": 300
100
+ },
101
+ {
102
+ "epoch": 0.18,
103
+ "learning_rate": 0.0001230769230769231,
104
+ "loss": 0.7222,
105
+ "step": 320
106
+ },
107
+ {
108
+ "epoch": 0.2,
109
+ "learning_rate": 0.00013076923076923077,
110
+ "loss": 0.7456,
111
+ "step": 340
112
+ },
113
+ {
114
+ "epoch": 0.21,
115
+ "learning_rate": 0.00013846153846153847,
116
+ "loss": 0.7447,
117
+ "step": 360
118
+ },
119
+ {
120
+ "epoch": 0.22,
121
+ "learning_rate": 0.00014615384615384615,
122
+ "loss": 0.7297,
123
+ "step": 380
124
+ },
125
+ {
126
+ "epoch": 0.23,
127
+ "learning_rate": 0.00015384615384615385,
128
+ "loss": 0.7339,
129
+ "step": 400
130
+ },
131
+ {
132
+ "epoch": 0.24,
133
+ "learning_rate": 0.00016153846153846155,
134
+ "loss": 0.7418,
135
+ "step": 420
136
+ },
137
+ {
138
+ "epoch": 0.25,
139
+ "learning_rate": 0.00016923076923076923,
140
+ "loss": 0.7315,
141
+ "step": 440
142
+ },
143
+ {
144
+ "epoch": 0.27,
145
+ "learning_rate": 0.00017692307692307693,
146
+ "loss": 0.7104,
147
+ "step": 460
148
+ },
149
+ {
150
+ "epoch": 0.28,
151
+ "learning_rate": 0.00018461538461538463,
152
+ "loss": 0.717,
153
+ "step": 480
154
+ },
155
+ {
156
+ "epoch": 0.29,
157
+ "learning_rate": 0.00019230769230769233,
158
+ "loss": 0.7307,
159
+ "step": 500
160
+ },
161
+ {
162
+ "epoch": 0.3,
163
+ "learning_rate": 0.0002,
164
+ "loss": 0.728,
165
+ "step": 520
166
+ },
167
+ {
168
+ "epoch": 0.31,
169
+ "learning_rate": 0.0001991451164778799,
170
+ "loss": 0.7171,
171
+ "step": 540
172
+ },
173
+ {
174
+ "epoch": 0.32,
175
+ "learning_rate": 0.0001982902329557598,
176
+ "loss": 0.7137,
177
+ "step": 560
178
+ },
179
+ {
180
+ "epoch": 0.33,
181
+ "learning_rate": 0.0001974353494336397,
182
+ "loss": 0.6911,
183
+ "step": 580
184
+ },
185
+ {
186
+ "epoch": 0.35,
187
+ "learning_rate": 0.00019658046591151956,
188
+ "loss": 0.6992,
189
+ "step": 600
190
+ },
191
+ {
192
+ "epoch": 0.36,
193
+ "learning_rate": 0.00019572558238939946,
194
+ "loss": 0.6959,
195
+ "step": 620
196
+ },
197
+ {
198
+ "epoch": 0.37,
199
+ "learning_rate": 0.00019487069886727932,
200
+ "loss": 0.7046,
201
+ "step": 640
202
+ },
203
+ {
204
+ "epoch": 0.38,
205
+ "learning_rate": 0.00019401581534515922,
206
+ "loss": 0.6976,
207
+ "step": 660
208
+ },
209
+ {
210
+ "epoch": 0.39,
211
+ "learning_rate": 0.0001931609318230391,
212
+ "loss": 0.7042,
213
+ "step": 680
214
+ },
215
+ {
216
+ "epoch": 0.4,
217
+ "learning_rate": 0.000192306048300919,
218
+ "loss": 0.6908,
219
+ "step": 700
220
+ },
221
+ {
222
+ "epoch": 0.42,
223
+ "learning_rate": 0.0001914511647787989,
224
+ "loss": 0.6984,
225
+ "step": 720
226
+ },
227
+ {
228
+ "epoch": 0.43,
229
+ "learning_rate": 0.0001905962812566788,
230
+ "loss": 0.6999,
231
+ "step": 740
232
+ },
233
+ {
234
+ "epoch": 0.44,
235
+ "learning_rate": 0.0001897413977345587,
236
+ "loss": 0.7094,
237
+ "step": 760
238
+ },
239
+ {
240
+ "epoch": 0.45,
241
+ "learning_rate": 0.00018888651421243856,
242
+ "loss": 0.7003,
243
+ "step": 780
244
+ },
245
+ {
246
+ "epoch": 0.46,
247
+ "learning_rate": 0.00018803163069031845,
248
+ "loss": 0.6809,
249
+ "step": 800
250
+ },
251
+ {
252
+ "epoch": 0.47,
253
+ "learning_rate": 0.00018717674716819835,
254
+ "loss": 0.7135,
255
+ "step": 820
256
+ },
257
+ {
258
+ "epoch": 0.48,
259
+ "learning_rate": 0.00018632186364607822,
260
+ "loss": 0.6913,
261
+ "step": 840
262
+ },
263
+ {
264
+ "epoch": 0.5,
265
+ "learning_rate": 0.0001854669801239581,
266
+ "loss": 0.6932,
267
+ "step": 860
268
+ },
269
+ {
270
+ "epoch": 0.51,
271
+ "learning_rate": 0.000184612096601838,
272
+ "loss": 0.6832,
273
+ "step": 880
274
+ },
275
+ {
276
+ "epoch": 0.52,
277
+ "learning_rate": 0.0001837572130797179,
278
+ "loss": 0.6927,
279
+ "step": 900
280
+ },
281
+ {
282
+ "epoch": 0.53,
283
+ "learning_rate": 0.0001829023295575978,
284
+ "loss": 0.6729,
285
+ "step": 920
286
+ },
287
+ {
288
+ "epoch": 0.54,
289
+ "learning_rate": 0.00018204744603547766,
290
+ "loss": 0.6742,
291
+ "step": 940
292
+ },
293
+ {
294
+ "epoch": 0.55,
295
+ "learning_rate": 0.00018119256251335756,
296
+ "loss": 0.6718,
297
+ "step": 960
298
+ },
299
+ {
300
+ "epoch": 0.57,
301
+ "learning_rate": 0.00018033767899123745,
302
+ "loss": 0.6868,
303
+ "step": 980
304
+ },
305
+ {
306
+ "epoch": 0.58,
307
+ "learning_rate": 0.00017948279546911735,
308
+ "loss": 0.6869,
309
+ "step": 1000
310
+ },
311
+ {
312
+ "epoch": 0.59,
313
+ "learning_rate": 0.00017862791194699724,
314
+ "loss": 0.6633,
315
+ "step": 1020
316
+ },
317
+ {
318
+ "epoch": 0.6,
319
+ "learning_rate": 0.0001777730284248771,
320
+ "loss": 0.6967,
321
+ "step": 1040
322
+ },
323
+ {
324
+ "epoch": 0.61,
325
+ "learning_rate": 0.000176918144902757,
326
+ "loss": 0.6758,
327
+ "step": 1060
328
+ },
329
+ {
330
+ "epoch": 0.62,
331
+ "learning_rate": 0.0001760632613806369,
332
+ "loss": 0.6918,
333
+ "step": 1080
334
+ },
335
+ {
336
+ "epoch": 0.63,
337
+ "learning_rate": 0.0001752083778585168,
338
+ "loss": 0.6718,
339
+ "step": 1100
340
+ },
341
+ {
342
+ "epoch": 0.65,
343
+ "learning_rate": 0.00017435349433639666,
344
+ "loss": 0.6722,
345
+ "step": 1120
346
+ },
347
+ {
348
+ "epoch": 0.66,
349
+ "learning_rate": 0.00017349861081427656,
350
+ "loss": 0.684,
351
+ "step": 1140
352
+ },
353
+ {
354
+ "epoch": 0.67,
355
+ "learning_rate": 0.00017264372729215645,
356
+ "loss": 0.6619,
357
+ "step": 1160
358
+ },
359
+ {
360
+ "epoch": 0.68,
361
+ "learning_rate": 0.00017178884377003635,
362
+ "loss": 0.6789,
363
+ "step": 1180
364
+ },
365
+ {
366
+ "epoch": 0.69,
367
+ "learning_rate": 0.00017093396024791624,
368
+ "loss": 0.677,
369
+ "step": 1200
370
+ },
371
+ {
372
+ "epoch": 0.7,
373
+ "learning_rate": 0.00017007907672579614,
374
+ "loss": 0.6836,
375
+ "step": 1220
376
+ },
377
+ {
378
+ "epoch": 0.72,
379
+ "learning_rate": 0.000169266937379782,
380
+ "loss": 0.6823,
381
+ "step": 1240
382
+ },
383
+ {
384
+ "epoch": 0.73,
385
+ "learning_rate": 0.0001684120538576619,
386
+ "loss": 0.6936,
387
+ "step": 1260
388
+ },
389
+ {
390
+ "epoch": 0.74,
391
+ "learning_rate": 0.0001675571703355418,
392
+ "loss": 0.6646,
393
+ "step": 1280
394
+ },
395
+ {
396
+ "epoch": 0.75,
397
+ "learning_rate": 0.0001667022868134217,
398
+ "loss": 0.6733,
399
+ "step": 1300
400
+ },
401
+ {
402
+ "epoch": 0.76,
403
+ "learning_rate": 0.00016584740329130159,
404
+ "loss": 0.6753,
405
+ "step": 1320
406
+ },
407
+ {
408
+ "epoch": 0.77,
409
+ "learning_rate": 0.00016499251976918145,
410
+ "loss": 0.677,
411
+ "step": 1340
412
+ },
413
+ {
414
+ "epoch": 0.78,
415
+ "learning_rate": 0.00016413763624706135,
416
+ "loss": 0.6692,
417
+ "step": 1360
418
+ },
419
+ {
420
+ "epoch": 0.8,
421
+ "learning_rate": 0.00016328275272494122,
422
+ "loss": 0.656,
423
+ "step": 1380
424
+ },
425
+ {
426
+ "epoch": 0.81,
427
+ "learning_rate": 0.0001624278692028211,
428
+ "loss": 0.6767,
429
+ "step": 1400
430
+ },
431
+ {
432
+ "epoch": 0.82,
433
+ "learning_rate": 0.000161572985680701,
434
+ "loss": 0.6485,
435
+ "step": 1420
436
+ },
437
+ {
438
+ "epoch": 0.83,
439
+ "learning_rate": 0.0001607181021585809,
440
+ "loss": 0.679,
441
+ "step": 1440
442
+ },
443
+ {
444
+ "epoch": 0.84,
445
+ "learning_rate": 0.0001598632186364608,
446
+ "loss": 0.6701,
447
+ "step": 1460
448
+ },
449
+ {
450
+ "epoch": 0.85,
451
+ "learning_rate": 0.0001590083351143407,
452
+ "loss": 0.6632,
453
+ "step": 1480
454
+ },
455
+ {
456
+ "epoch": 0.87,
457
+ "learning_rate": 0.00015815345159222056,
458
+ "loss": 0.6707,
459
+ "step": 1500
460
+ },
461
+ {
462
+ "epoch": 0.88,
463
+ "learning_rate": 0.00015729856807010045,
464
+ "loss": 0.6738,
465
+ "step": 1520
466
+ },
467
+ {
468
+ "epoch": 0.89,
469
+ "learning_rate": 0.00015644368454798035,
470
+ "loss": 0.68,
471
+ "step": 1540
472
+ },
473
+ {
474
+ "epoch": 0.9,
475
+ "learning_rate": 0.00015558880102586024,
476
+ "loss": 0.6748,
477
+ "step": 1560
478
+ },
479
+ {
480
+ "epoch": 0.91,
481
+ "learning_rate": 0.00015473391750374014,
482
+ "loss": 0.6628,
483
+ "step": 1580
484
+ },
485
+ {
486
+ "epoch": 0.92,
487
+ "learning_rate": 0.00015387903398162,
488
+ "loss": 0.6674,
489
+ "step": 1600
490
+ },
491
+ {
492
+ "epoch": 0.93,
493
+ "learning_rate": 0.0001530241504594999,
494
+ "loss": 0.6572,
495
+ "step": 1620
496
+ },
497
+ {
498
+ "epoch": 0.95,
499
+ "learning_rate": 0.0001521692669373798,
500
+ "loss": 0.6547,
501
+ "step": 1640
502
+ },
503
+ {
504
+ "epoch": 0.96,
505
+ "learning_rate": 0.0001513143834152597,
506
+ "loss": 0.6599,
507
+ "step": 1660
508
+ },
509
+ {
510
+ "epoch": 0.97,
511
+ "learning_rate": 0.00015045949989313955,
512
+ "loss": 0.6665,
513
+ "step": 1680
514
+ },
515
+ {
516
+ "epoch": 0.98,
517
+ "learning_rate": 0.00014960461637101945,
518
+ "loss": 0.6687,
519
+ "step": 1700
520
+ },
521
+ {
522
+ "epoch": 0.99,
523
+ "learning_rate": 0.00014874973284889934,
524
+ "loss": 0.6655,
525
+ "step": 1720
526
+ },
527
+ {
528
+ "epoch": 1.0,
529
+ "eval_loss": 0.5166412591934204,
530
+ "eval_runtime": 3665.2848,
531
+ "eval_samples_per_second": 1.081,
532
+ "eval_steps_per_second": 0.36,
533
+ "step": 1733
534
+ },
535
+ {
536
+ "epoch": 1.0,
537
+ "learning_rate": 0.00014789484932677924,
538
+ "loss": 0.673,
539
+ "step": 1740
540
+ },
541
+ {
542
+ "epoch": 1.02,
543
+ "learning_rate": 0.00014703996580465913,
544
+ "loss": 0.6603,
545
+ "step": 1760
546
+ },
547
+ {
548
+ "epoch": 1.03,
549
+ "learning_rate": 0.00014618508228253903,
550
+ "loss": 0.6548,
551
+ "step": 1780
552
+ },
553
+ {
554
+ "epoch": 1.04,
555
+ "learning_rate": 0.0001453301987604189,
556
+ "loss": 0.6708,
557
+ "step": 1800
558
+ },
559
+ {
560
+ "epoch": 1.05,
561
+ "learning_rate": 0.0001444753152382988,
562
+ "loss": 0.6668,
563
+ "step": 1820
564
+ },
565
+ {
566
+ "epoch": 1.06,
567
+ "learning_rate": 0.00014362043171617866,
568
+ "loss": 0.6901,
569
+ "step": 1840
570
+ },
571
+ {
572
+ "epoch": 1.07,
573
+ "learning_rate": 0.00014276554819405855,
574
+ "loss": 0.6648,
575
+ "step": 1860
576
+ },
577
+ {
578
+ "epoch": 1.08,
579
+ "learning_rate": 0.00014191066467193845,
580
+ "loss": 0.6431,
581
+ "step": 1880
582
+ },
583
+ {
584
+ "epoch": 1.1,
585
+ "learning_rate": 0.00014105578114981834,
586
+ "loss": 0.6653,
587
+ "step": 1900
588
+ },
589
+ {
590
+ "epoch": 1.11,
591
+ "learning_rate": 0.00014020089762769824,
592
+ "loss": 0.6693,
593
+ "step": 1920
594
+ },
595
+ {
596
+ "epoch": 1.12,
597
+ "learning_rate": 0.00013934601410557813,
598
+ "loss": 0.6732,
599
+ "step": 1940
600
+ },
601
+ {
602
+ "epoch": 1.13,
603
+ "learning_rate": 0.00013849113058345803,
604
+ "loss": 0.6434,
605
+ "step": 1960
606
+ },
607
+ {
608
+ "epoch": 1.14,
609
+ "learning_rate": 0.00013763624706133792,
610
+ "loss": 0.6429,
611
+ "step": 1980
612
+ },
613
+ {
614
+ "epoch": 1.15,
615
+ "learning_rate": 0.0001367813635392178,
616
+ "loss": 0.6619,
617
+ "step": 2000
618
+ },
619
+ {
620
+ "epoch": 1.17,
621
+ "learning_rate": 0.00013592648001709766,
622
+ "loss": 0.6561,
623
+ "step": 2020
624
+ },
625
+ {
626
+ "epoch": 1.18,
627
+ "learning_rate": 0.00013507159649497755,
628
+ "loss": 0.6518,
629
+ "step": 2040
630
+ },
631
+ {
632
+ "epoch": 1.19,
633
+ "learning_rate": 0.00013421671297285745,
634
+ "loss": 0.6358,
635
+ "step": 2060
636
+ },
637
+ {
638
+ "epoch": 1.2,
639
+ "learning_rate": 0.00013336182945073734,
640
+ "loss": 0.6711,
641
+ "step": 2080
642
+ },
643
+ {
644
+ "epoch": 1.21,
645
+ "learning_rate": 0.00013250694592861724,
646
+ "loss": 0.6543,
647
+ "step": 2100
648
+ },
649
+ {
650
+ "epoch": 1.22,
651
+ "learning_rate": 0.00013165206240649713,
652
+ "loss": 0.6517,
653
+ "step": 2120
654
+ },
655
+ {
656
+ "epoch": 1.23,
657
+ "learning_rate": 0.00013079717888437703,
658
+ "loss": 0.6549,
659
+ "step": 2140
660
+ },
661
+ {
662
+ "epoch": 1.25,
663
+ "learning_rate": 0.0001299422953622569,
664
+ "loss": 0.6558,
665
+ "step": 2160
666
+ },
667
+ {
668
+ "epoch": 1.26,
669
+ "learning_rate": 0.0001290874118401368,
670
+ "loss": 0.6585,
671
+ "step": 2180
672
+ },
673
+ {
674
+ "epoch": 1.27,
675
+ "learning_rate": 0.00012823252831801668,
676
+ "loss": 0.6444,
677
+ "step": 2200
678
+ },
679
+ {
680
+ "epoch": 1.28,
681
+ "learning_rate": 0.00012737764479589655,
682
+ "loss": 0.642,
683
+ "step": 2220
684
+ },
685
+ {
686
+ "epoch": 1.29,
687
+ "learning_rate": 0.00012652276127377645,
688
+ "loss": 0.6708,
689
+ "step": 2240
690
+ },
691
+ {
692
+ "epoch": 1.3,
693
+ "learning_rate": 0.00012566787775165634,
694
+ "loss": 0.653,
695
+ "step": 2260
696
+ },
697
+ {
698
+ "epoch": 1.32,
699
+ "learning_rate": 0.00012481299422953623,
700
+ "loss": 0.6438,
701
+ "step": 2280
702
+ },
703
+ {
704
+ "epoch": 1.33,
705
+ "learning_rate": 0.00012395811070741613,
706
+ "loss": 0.6296,
707
+ "step": 2300
708
+ },
709
+ {
710
+ "epoch": 1.34,
711
+ "learning_rate": 0.00012310322718529602,
712
+ "loss": 0.6376,
713
+ "step": 2320
714
+ },
715
+ {
716
+ "epoch": 1.35,
717
+ "learning_rate": 0.0001222483436631759,
718
+ "loss": 0.6284,
719
+ "step": 2340
720
+ },
721
+ {
722
+ "epoch": 1.36,
723
+ "learning_rate": 0.00012139346014105579,
724
+ "loss": 0.6373,
725
+ "step": 2360
726
+ },
727
+ {
728
+ "epoch": 1.37,
729
+ "learning_rate": 0.00012053857661893568,
730
+ "loss": 0.6289,
731
+ "step": 2380
732
+ },
733
+ {
734
+ "epoch": 1.38,
735
+ "learning_rate": 0.00011968369309681558,
736
+ "loss": 0.6421,
737
+ "step": 2400
738
+ },
739
+ {
740
+ "epoch": 1.4,
741
+ "learning_rate": 0.00011882880957469544,
742
+ "loss": 0.6385,
743
+ "step": 2420
744
+ },
745
+ {
746
+ "epoch": 1.41,
747
+ "learning_rate": 0.00011797392605257534,
748
+ "loss": 0.6312,
749
+ "step": 2440
750
+ },
751
+ {
752
+ "epoch": 1.42,
753
+ "learning_rate": 0.00011711904253045522,
754
+ "loss": 0.6454,
755
+ "step": 2460
756
+ },
757
+ {
758
+ "epoch": 1.43,
759
+ "learning_rate": 0.00011626415900833511,
760
+ "loss": 0.6476,
761
+ "step": 2480
762
+ },
763
+ {
764
+ "epoch": 1.44,
765
+ "learning_rate": 0.00011540927548621501,
766
+ "loss": 0.6373,
767
+ "step": 2500
768
+ },
769
+ {
770
+ "epoch": 1.45,
771
+ "learning_rate": 0.0001145543919640949,
772
+ "loss": 0.647,
773
+ "step": 2520
774
+ },
775
+ {
776
+ "epoch": 1.47,
777
+ "learning_rate": 0.00011369950844197479,
778
+ "loss": 0.6319,
779
+ "step": 2540
780
+ },
781
+ {
782
+ "epoch": 1.48,
783
+ "learning_rate": 0.00011284462491985468,
784
+ "loss": 0.6506,
785
+ "step": 2560
786
+ },
787
+ {
788
+ "epoch": 1.49,
789
+ "learning_rate": 0.00011198974139773457,
790
+ "loss": 0.637,
791
+ "step": 2580
792
+ },
793
+ {
794
+ "epoch": 1.5,
795
+ "learning_rate": 0.00011113485787561446,
796
+ "loss": 0.6339,
797
+ "step": 2600
798
+ },
799
+ {
800
+ "epoch": 1.51,
801
+ "learning_rate": 0.00011027997435349434,
802
+ "loss": 0.6316,
803
+ "step": 2620
804
+ },
805
+ {
806
+ "epoch": 1.52,
807
+ "learning_rate": 0.00010942509083137422,
808
+ "loss": 0.6325,
809
+ "step": 2640
810
+ },
811
+ {
812
+ "epoch": 1.53,
813
+ "learning_rate": 0.00010857020730925411,
814
+ "loss": 0.6202,
815
+ "step": 2660
816
+ },
817
+ {
818
+ "epoch": 1.55,
819
+ "learning_rate": 0.00010771532378713401,
820
+ "loss": 0.6219,
821
+ "step": 2680
822
+ },
823
+ {
824
+ "epoch": 1.56,
825
+ "learning_rate": 0.00010686044026501389,
826
+ "loss": 0.6367,
827
+ "step": 2700
828
+ },
829
+ {
830
+ "epoch": 1.57,
831
+ "learning_rate": 0.00010600555674289378,
832
+ "loss": 0.6374,
833
+ "step": 2720
834
+ },
835
+ {
836
+ "epoch": 1.58,
837
+ "learning_rate": 0.00010515067322077368,
838
+ "loss": 0.6235,
839
+ "step": 2740
840
+ },
841
+ {
842
+ "epoch": 1.59,
843
+ "learning_rate": 0.00010429578969865357,
844
+ "loss": 0.626,
845
+ "step": 2760
846
+ },
847
+ {
848
+ "epoch": 1.6,
849
+ "learning_rate": 0.00010344090617653345,
850
+ "loss": 0.6325,
851
+ "step": 2780
852
+ },
853
+ {
854
+ "epoch": 1.62,
855
+ "learning_rate": 0.00010258602265441335,
856
+ "loss": 0.6425,
857
+ "step": 2800
858
+ },
859
+ {
860
+ "epoch": 1.63,
861
+ "learning_rate": 0.00010173113913229324,
862
+ "loss": 0.6344,
863
+ "step": 2820
864
+ },
865
+ {
866
+ "epoch": 1.64,
867
+ "learning_rate": 0.00010087625561017311,
868
+ "loss": 0.6208,
869
+ "step": 2840
870
+ },
871
+ {
872
+ "epoch": 1.65,
873
+ "learning_rate": 0.000100021372088053,
874
+ "loss": 0.6339,
875
+ "step": 2860
876
+ },
877
+ {
878
+ "epoch": 1.66,
879
+ "learning_rate": 9.916648856593289e-05,
880
+ "loss": 0.6348,
881
+ "step": 2880
882
+ },
883
+ {
884
+ "epoch": 1.67,
885
+ "learning_rate": 9.831160504381278e-05,
886
+ "loss": 0.6193,
887
+ "step": 2900
888
+ },
889
+ {
890
+ "epoch": 1.68,
891
+ "learning_rate": 9.745672152169268e-05,
892
+ "loss": 0.6283,
893
+ "step": 2920
894
+ },
895
+ {
896
+ "epoch": 1.7,
897
+ "learning_rate": 9.660183799957256e-05,
898
+ "loss": 0.6314,
899
+ "step": 2940
900
+ },
901
+ {
902
+ "epoch": 1.71,
903
+ "learning_rate": 9.574695447745245e-05,
904
+ "loss": 0.6373,
905
+ "step": 2960
906
+ },
907
+ {
908
+ "epoch": 1.72,
909
+ "learning_rate": 9.489207095533233e-05,
910
+ "loss": 0.6437,
911
+ "step": 2980
912
+ },
913
+ {
914
+ "epoch": 1.73,
915
+ "learning_rate": 9.403718743321223e-05,
916
+ "loss": 0.6433,
917
+ "step": 3000
918
+ },
919
+ {
920
+ "epoch": 1.74,
921
+ "learning_rate": 9.318230391109212e-05,
922
+ "loss": 0.6238,
923
+ "step": 3020
924
+ },
925
+ {
926
+ "epoch": 1.75,
927
+ "learning_rate": 9.2327420388972e-05,
928
+ "loss": 0.6237,
929
+ "step": 3040
930
+ },
931
+ {
932
+ "epoch": 1.77,
933
+ "learning_rate": 9.14725368668519e-05,
934
+ "loss": 0.6388,
935
+ "step": 3060
936
+ },
937
+ {
938
+ "epoch": 1.78,
939
+ "learning_rate": 9.06176533447318e-05,
940
+ "loss": 0.6422,
941
+ "step": 3080
942
+ },
943
+ {
944
+ "epoch": 1.79,
945
+ "learning_rate": 8.976276982261168e-05,
946
+ "loss": 0.5997,
947
+ "step": 3100
948
+ },
949
+ {
950
+ "epoch": 1.8,
951
+ "learning_rate": 8.890788630049156e-05,
952
+ "loss": 0.6265,
953
+ "step": 3120
954
+ },
955
+ {
956
+ "epoch": 1.81,
957
+ "learning_rate": 8.805300277837145e-05,
958
+ "loss": 0.6298,
959
+ "step": 3140
960
+ },
961
+ {
962
+ "epoch": 1.82,
963
+ "learning_rate": 8.719811925625135e-05,
964
+ "loss": 0.622,
965
+ "step": 3160
966
+ },
967
+ {
968
+ "epoch": 1.83,
969
+ "learning_rate": 8.634323573413123e-05,
970
+ "loss": 0.6232,
971
+ "step": 3180
972
+ },
973
+ {
974
+ "epoch": 1.85,
975
+ "learning_rate": 8.548835221201111e-05,
976
+ "loss": 0.6337,
977
+ "step": 3200
978
+ },
979
+ {
980
+ "epoch": 1.86,
981
+ "learning_rate": 8.4633468689891e-05,
982
+ "loss": 0.6187,
983
+ "step": 3220
984
+ },
985
+ {
986
+ "epoch": 1.87,
987
+ "learning_rate": 8.37785851677709e-05,
988
+ "loss": 0.6446,
989
+ "step": 3240
990
+ },
991
+ {
992
+ "epoch": 1.88,
993
+ "learning_rate": 8.292370164565079e-05,
994
+ "loss": 0.6298,
995
+ "step": 3260
996
+ },
997
+ {
998
+ "epoch": 1.89,
999
+ "learning_rate": 8.206881812353067e-05,
1000
+ "loss": 0.6364,
1001
+ "step": 3280
1002
+ },
1003
+ {
1004
+ "epoch": 1.9,
1005
+ "learning_rate": 8.121393460141055e-05,
1006
+ "loss": 0.6314,
1007
+ "step": 3300
1008
+ },
1009
+ {
1010
+ "epoch": 1.92,
1011
+ "learning_rate": 8.035905107929045e-05,
1012
+ "loss": 0.633,
1013
+ "step": 3320
1014
+ },
1015
+ {
1016
+ "epoch": 1.93,
1017
+ "learning_rate": 7.950416755717034e-05,
1018
+ "loss": 0.6163,
1019
+ "step": 3340
1020
+ },
1021
+ {
1022
+ "epoch": 1.94,
1023
+ "learning_rate": 7.864928403505023e-05,
1024
+ "loss": 0.6351,
1025
+ "step": 3360
1026
+ },
1027
+ {
1028
+ "epoch": 1.95,
1029
+ "learning_rate": 7.779440051293012e-05,
1030
+ "loss": 0.6038,
1031
+ "step": 3380
1032
+ },
1033
+ {
1034
+ "epoch": 1.96,
1035
+ "learning_rate": 7.693951699081e-05,
1036
+ "loss": 0.6245,
1037
+ "step": 3400
1038
+ },
1039
+ {
1040
+ "epoch": 1.97,
1041
+ "learning_rate": 7.60846334686899e-05,
1042
+ "loss": 0.6311,
1043
+ "step": 3420
1044
+ },
1045
+ {
1046
+ "epoch": 1.98,
1047
+ "learning_rate": 7.522974994656978e-05,
1048
+ "loss": 0.6391,
1049
+ "step": 3440
1050
+ },
1051
+ {
1052
+ "epoch": 2.0,
1053
+ "learning_rate": 7.437486642444967e-05,
1054
+ "loss": 0.6205,
1055
+ "step": 3460
1056
+ },
1057
+ {
1058
+ "epoch": 2.0,
1059
+ "eval_loss": 0.4947710931301117,
1060
+ "eval_runtime": 3649.3488,
1061
+ "eval_samples_per_second": 1.086,
1062
+ "eval_steps_per_second": 0.362,
1063
+ "step": 3466
1064
+ }
1065
+ ],
1066
+ "logging_steps": 20,
1067
+ "max_steps": 5199,
1068
+ "num_train_epochs": 3,
1069
+ "save_steps": 500,
1070
+ "total_flos": 3.6485939432993587e+18,
1071
+ "trial_name": null,
1072
+ "trial_params": null
1073
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c1edc5b1bcd0355612749d7e505a9d98a74ee9056b118b0b815148f2817a927
3
+ size 4472