metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- f1
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-mgasior
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: F1
type: f1
value: 0.18897637795275588
swin-tiny-patch4-window7-224-finetuned-mgasior
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 46788898816.0
- F1: 0.1890
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 9 | 46788898816.0 | 0.1890 |
40845207142.4 | 2.0 | 18 | 46788898816.0 | 0.1732 |
41037873152.0 | 3.0 | 27 | 46788898816.0 | 0.1732 |
Framework versions
- Transformers 4.36.1
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0