End of training
Browse files- README.md +2 -2
- all_results.json +9 -9
- eval_results.json +5 -5
- train_results.json +4 -4
- trainer_state.json +22 -22
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: F1
|
24 |
type: f1
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,7 +33,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
- Loss: 46788898816.0
|
36 |
-
- F1: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
22 |
metrics:
|
23 |
- name: F1
|
24 |
type: f1
|
25 |
+
value: 0.18897637795275588
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
- Loss: 46788898816.0
|
36 |
+
- F1: 0.1890
|
37 |
|
38 |
## Model description
|
39 |
|
all_results.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
"eval_accuracy": 0.18110236220472442,
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss":
|
6 |
-
"eval_runtime": 2.
|
7 |
-
"eval_samples_per_second":
|
8 |
-
"eval_steps_per_second": 1.
|
9 |
-
"train_loss":
|
10 |
-
"train_runtime":
|
11 |
-
"train_samples_per_second":
|
12 |
-
"train_steps_per_second": 0.
|
13 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
"eval_accuracy": 0.18110236220472442,
|
4 |
+
"eval_f1": 0.18897637795275588,
|
5 |
+
"eval_loss": 46788898816.0,
|
6 |
+
"eval_runtime": 2.4975,
|
7 |
+
"eval_samples_per_second": 50.851,
|
8 |
+
"eval_steps_per_second": 1.602,
|
9 |
+
"train_loss": 41129279488.0,
|
10 |
+
"train_runtime": 103.012,
|
11 |
+
"train_samples_per_second": 33.258,
|
12 |
+
"train_steps_per_second": 0.262
|
13 |
}
|
eval_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_f1": 0.
|
4 |
-
"eval_loss":
|
5 |
-
"eval_runtime": 2.
|
6 |
-
"eval_samples_per_second":
|
7 |
-
"eval_steps_per_second": 1.
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_f1": 0.18897637795275588,
|
4 |
+
"eval_loss": 46788898816.0,
|
5 |
+
"eval_runtime": 2.4975,
|
6 |
+
"eval_samples_per_second": 50.851,
|
7 |
+
"eval_steps_per_second": 1.602
|
8 |
}
|
train_results.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"train_loss":
|
4 |
-
"train_runtime":
|
5 |
-
"train_samples_per_second":
|
6 |
-
"train_steps_per_second": 0.
|
7 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"train_loss": 41129279488.0,
|
4 |
+
"train_runtime": 103.012,
|
5 |
+
"train_samples_per_second": 33.258,
|
6 |
+
"train_steps_per_second": 0.262
|
7 |
}
|
trainer_state.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"best_metric": 0.
|
3 |
"best_model_checkpoint": "swin-tiny-patch4-window7-224-finetuned-mgasior/checkpoint-9",
|
4 |
"epoch": 3.0,
|
5 |
"eval_steps": 500,
|
@@ -10,51 +10,51 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
-
"eval_f1": 0.
|
14 |
-
"eval_loss":
|
15 |
-
"eval_runtime": 2.
|
16 |
-
"eval_samples_per_second":
|
17 |
-
"eval_steps_per_second": 1.
|
18 |
"step": 9
|
19 |
},
|
20 |
{
|
21 |
"epoch": 1.11,
|
22 |
"learning_rate": 3.541666666666667e-05,
|
23 |
-
"loss":
|
24 |
"step": 10
|
25 |
},
|
26 |
{
|
27 |
"epoch": 2.0,
|
28 |
-
"eval_f1": 0.
|
29 |
-
"eval_loss":
|
30 |
-
"eval_runtime": 2.
|
31 |
-
"eval_samples_per_second":
|
32 |
-
"eval_steps_per_second": 1.
|
33 |
"step": 18
|
34 |
},
|
35 |
{
|
36 |
"epoch": 2.22,
|
37 |
"learning_rate": 1.4583333333333335e-05,
|
38 |
-
"loss":
|
39 |
"step": 20
|
40 |
},
|
41 |
{
|
42 |
"epoch": 3.0,
|
43 |
-
"eval_f1": 0.
|
44 |
-
"eval_loss":
|
45 |
-
"eval_runtime": 2.
|
46 |
-
"eval_samples_per_second":
|
47 |
-
"eval_steps_per_second": 1.
|
48 |
"step": 27
|
49 |
},
|
50 |
{
|
51 |
"epoch": 3.0,
|
52 |
"step": 27,
|
53 |
"total_flos": 8.516613618951782e+16,
|
54 |
-
"train_loss":
|
55 |
-
"train_runtime":
|
56 |
-
"train_samples_per_second":
|
57 |
-
"train_steps_per_second": 0.
|
58 |
}
|
59 |
],
|
60 |
"logging_steps": 10,
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.18897637795275588,
|
3 |
"best_model_checkpoint": "swin-tiny-patch4-window7-224-finetuned-mgasior/checkpoint-9",
|
4 |
"epoch": 3.0,
|
5 |
"eval_steps": 500,
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
+
"eval_f1": 0.18897637795275588,
|
14 |
+
"eval_loss": 46788898816.0,
|
15 |
+
"eval_runtime": 2.512,
|
16 |
+
"eval_samples_per_second": 50.558,
|
17 |
+
"eval_steps_per_second": 1.592,
|
18 |
"step": 9
|
19 |
},
|
20 |
{
|
21 |
"epoch": 1.11,
|
22 |
"learning_rate": 3.541666666666667e-05,
|
23 |
+
"loss": 40845207142.4,
|
24 |
"step": 10
|
25 |
},
|
26 |
{
|
27 |
"epoch": 2.0,
|
28 |
+
"eval_f1": 0.1732283464566929,
|
29 |
+
"eval_loss": 46788898816.0,
|
30 |
+
"eval_runtime": 2.1609,
|
31 |
+
"eval_samples_per_second": 58.772,
|
32 |
+
"eval_steps_per_second": 1.851,
|
33 |
"step": 18
|
34 |
},
|
35 |
{
|
36 |
"epoch": 2.22,
|
37 |
"learning_rate": 1.4583333333333335e-05,
|
38 |
+
"loss": 41037873152.0,
|
39 |
"step": 20
|
40 |
},
|
41 |
{
|
42 |
"epoch": 3.0,
|
43 |
+
"eval_f1": 0.1732283464566929,
|
44 |
+
"eval_loss": 46788898816.0,
|
45 |
+
"eval_runtime": 2.2498,
|
46 |
+
"eval_samples_per_second": 56.448,
|
47 |
+
"eval_steps_per_second": 1.778,
|
48 |
"step": 27
|
49 |
},
|
50 |
{
|
51 |
"epoch": 3.0,
|
52 |
"step": 27,
|
53 |
"total_flos": 8.516613618951782e+16,
|
54 |
+
"train_loss": 41129279488.0,
|
55 |
+
"train_runtime": 103.012,
|
56 |
+
"train_samples_per_second": 33.258,
|
57 |
+
"train_steps_per_second": 0.262
|
58 |
}
|
59 |
],
|
60 |
"logging_steps": 10,
|