--- license: apache-2.0 tags: - generated_from_trainer pipeline_tag: text2text-generation inference: parameters: max_length: 256 num_beams: 4 length_penalty: 1.5 no_repeat_ngram_size: 3 early_stopping: true base_model: yhavinga/t5-base-dutch model-index: - name: t5-end2end-questions-generation-dutch results: [] --- # t5-end2end-questions-generation-dutch This model is a fine-tuned version of [yhavinga/t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) on a Google translated version of SQUAD 1.1 found here: https://www.kaggle.com/datasets/michelvanheijningen/squad1-dutch. The code used to finetune the model is largely based on the work by Thomas Simonini. You can find his English model [here](https://huggingface.co/ThomasSimonini/t5-end2end-question-generation) and his Google colab tutorial [here](https://colab.research.google.com/drive/1z-Zl2hftMrFXabYfmz8o9YZpgYx6sGeW?usp=sharing) It achieves the following results on the evaluation set: - Loss: 1.6546 ## Model description This is my first model ever and still a work in progress ;) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6528 | 0.34 | 100 | 1.9249 | | 1.964 | 0.68 | 200 | 1.7897 | | 1.8695 | 1.02 | 300 | 1.7554 | | 1.7922 | 1.35 | 400 | 1.7270 | | 1.7747 | 1.69 | 500 | 1.7054 | | 1.7473 | 2.03 | 600 | 1.7019 | | 1.697 | 2.37 | 700 | 1.6868 | | 1.6848 | 2.71 | 800 | 1.6810 | | 1.6756 | 3.05 | 900 | 1.6779 | | 1.6282 | 3.39 | 1000 | 1.6712 | | 1.6285 | 3.73 | 1100 | 1.6626 | | 1.6161 | 4.06 | 1200 | 1.6616 | | 1.5887 | 4.4 | 1300 | 1.6588 | | 1.5877 | 4.74 | 1400 | 1.6583 | | 1.5723 | 5.08 | 1500 | 1.6560 | | 1.5545 | 5.42 | 1600 | 1.6550 | | 1.5415 | 5.76 | 1700 | 1.6540 | | 1.5509 | 6.1 | 1800 | 1.6541 | | 1.5326 | 6.44 | 1900 | 1.6539 | | 1.5268 | 6.77 | 2000 | 1.6546 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2