--- language: zh license: creativeml-openrail-m tags: - diffusion - zh - Chinese --- # Chinese-Style-Stable-Diffusion-2-v0.1 ## Brief Introduction | ![cyberpunk](examples/cyberpunk.jpeg) | ![shiba](examples/shiba.jpeg) | ![ds](examples/ds.jpeg) | | ------------------------------------- | ----------------------------- | ------------------------------- | | ![waitan](examples/waitan.jpeg) | ![gf](examples/gf.jpeg) | ![ssh](examples/ssh.jpeg) | | ![cat](examples/cat.jpeg) | ![robot](examples/robot.jpeg) | ![castle](examples/castle.jpeg) | 大概是Huggingface 🤗社区首个开源的Stable diffusion 2 中文模型。该模型基于stable diffusion V2.1模型,在约500万条的中国风格特挑中文数据上进行微调,数据来源于多个开源数据集如[LAION-5B](https://laion.ai/blog/laion-5b/), [Noah-Wukong](https://wukong-dataset.github.io/wukong-dataset/), [Zero](https://zero.so.com/)和一些网络数据。 Probably the first open sourced Chinese Stable Diffusion 2 model in Huggingface🤗 community. This model is finetuned based on stable diffusion V2.1 with 5M chinese style filtered data. Dataset is composed of several different chinese open source dataset such as [LAION-5B](https://laion.ai/blog/laion-5b/), [Noah-Wukong](https://wukong-dataset.github.io/wukong-dataset/), [Zero](https://zero.so.com/) and some web data. ## Model Details ### 文本编码器/Text Encoder 文本编码器使用冻结参数的[lyua1225/clip-huge-zh-75k-steps-bs4096](https://huggingface.co/lyua1225/clip-huge-zh-75k-steps-bs4096)。 Text encoder is frozen [lyua1225/clip-huge-zh-75k-steps-bs4096](https://huggingface.co/lyua1225/clip-huge-zh-75k-steps-bs4096) . ### Unet 在特挑的500万中文数据集上训练了150K steps,使用指数移动平均值(EMA)做原绘画能力保留,使模型能够在中文风格和原绘画能力之间获得权衡。 Training on 5M chinese style filtered data for 150k steps. Exponential moving average(EMA) is applied to keep the original Stable Diffusion 2 drawing capability and reach a balance between chinese style and original drawing capability. ## Usage 因为使用了customed tokenizer, 所以需要优先加载一下tokenizer, 并传入trust_remote_code=True Custom Tokenizer should be loaded first with 'trust_remote_code=True'. ```py import torch from diffusers import StableDiffusionPipeline from transformers import AutoTokenizer tokenizer_id = "lyua1225/clip-huge-zh-75k-steps-bs4096" sd2_id = "Midu/chinese-style-stable-diffusion-2-v0.1" tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, trust_remote_code=True) pipe = StableDiffusionPipeline.from_pretrained(sd2_id, torch_dtype=torch.float16, tokenizer=tokenizer) pipe.to("cuda") image = pipe("赛博朋克风格的城市街道,8K分辨率,CG渲染", guidance_scale=10, num_inference_steps=20).images[0] image.save("cyberpunk.jpeg") ```