MiguelCalderon
commited on
Commit
•
5097617
1
Parent(s):
83ec2dd
Update README.md
Browse files
README.md
CHANGED
@@ -1,101 +1,107 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
base_model: google/vit-base-patch16-224
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
72 |
-
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- MiguelCalderon/TGdataTrain
|
8 |
+
- MiguelCalderon/TGdataTest
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: google-vit-base-patch16-224-Waste-O-I-classification
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: imagefolder
|
19 |
+
type: imagefolder
|
20 |
+
config: default
|
21 |
+
split: train
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.956
|
27 |
+
language:
|
28 |
+
- es
|
29 |
+
- en
|
30 |
+
pipeline_tag: image-classification
|
31 |
+
library_name: transformers
|
32 |
+
---
|
33 |
+
|
34 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
35 |
+
should probably proofread and complete it, then remove this comment. -->
|
36 |
+
|
37 |
+
# google-vit-base-patch16-224-Waste-O-I-classification
|
38 |
+
|
39 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
40 |
+
It achieves the following results on the evaluation set:
|
41 |
+
- Accuracy: 0.956
|
42 |
+
- Loss: 0.3036
|
43 |
+
|
44 |
+
## Model description
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Intended uses & limitations
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training and evaluation data
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Training procedure
|
57 |
+
|
58 |
+
### Training hyperparameters
|
59 |
+
|
60 |
+
The following hyperparameters were used during training:
|
61 |
+
- learning_rate: 0.0002
|
62 |
+
- train_batch_size: 8
|
63 |
+
- eval_batch_size: 8
|
64 |
+
- seed: 42
|
65 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
+
- lr_scheduler_type: linear
|
67 |
+
- num_epochs: 4
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
72 |
+
|:-------------:|:------:|:-----:|:--------:|:---------------:|
|
73 |
+
| 0.2168 | 0.1580 | 1000 | 0.9525 | 0.1303 |
|
74 |
+
| 0.196 | 0.3159 | 2000 | 0.941 | 0.1638 |
|
75 |
+
| 0.1993 | 0.4739 | 3000 | 0.9285 | 0.2206 |
|
76 |
+
| 0.1849 | 0.6318 | 4000 | 0.9225 | 0.2288 |
|
77 |
+
| 0.199 | 0.7898 | 5000 | 0.9105 | 0.3331 |
|
78 |
+
| 0.2171 | 0.9477 | 6000 | 0.944 | 0.1582 |
|
79 |
+
| 0.1209 | 1.1057 | 7000 | 0.9495 | 0.1887 |
|
80 |
+
| 0.114 | 1.2636 | 8000 | 0.932 | 0.1950 |
|
81 |
+
| 0.1268 | 1.4216 | 9000 | 0.9335 | 0.1965 |
|
82 |
+
| 0.1272 | 1.5795 | 10000 | 0.9165 | 0.3112 |
|
83 |
+
| 0.1003 | 1.7375 | 11000 | 0.9575 | 0.1353 |
|
84 |
+
| 0.0844 | 1.8954 | 12000 | 0.9345 | 0.2635 |
|
85 |
+
| 0.0757 | 2.0534 | 13000 | 0.952 | 0.1434 |
|
86 |
+
| 0.053 | 2.2113 | 14000 | 0.933 | 0.3203 |
|
87 |
+
| 0.0994 | 2.3693 | 15000 | 0.9405 | 0.2165 |
|
88 |
+
| 0.0248 | 2.5272 | 16000 | 0.951 | 0.2400 |
|
89 |
+
| 0.0842 | 2.6852 | 17000 | 0.906 | 0.4092 |
|
90 |
+
| 0.0733 | 2.8432 | 18000 | 0.9515 | 0.1937 |
|
91 |
+
| 0.0542 | 3.0011 | 19000 | 0.938 | 0.2911 |
|
92 |
+
| 0.0202 | 3.1591 | 20000 | 0.936 | 0.3648 |
|
93 |
+
| 0.0237 | 3.3170 | 21000 | 0.9355 | 0.3618 |
|
94 |
+
| 0.0294 | 3.4750 | 22000 | 0.9255 | 0.4209 |
|
95 |
+
| 0.0375 | 3.6329 | 23000 | 0.943 | 0.2840 |
|
96 |
+
| 0.0176 | 3.7909 | 24000 | 0.9525 | 0.2604 |
|
97 |
+
| 0.0252 | 3.9488 | 25000 | 0.9515 | 0.2500 |
|
98 |
+
| 0.0024 | 4.1068 | 26000 | 0.9545 | 0.2892 |
|
99 |
+
| 0.0119 | 4.2647 | 27000 | 0.956 | 0.3036 |
|
100 |
+
|
101 |
+
|
102 |
+
### Framework versions
|
103 |
+
|
104 |
+
- Transformers 4.44.0
|
105 |
+
- Pytorch 2.4.0+cpu
|
106 |
+
- Datasets 2.20.0
|
107 |
+
- Tokenizers 0.19.1
|