MiguelCalderon commited on
Commit
5097617
1 Parent(s): 83ec2dd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -101
README.md CHANGED
@@ -1,101 +1,107 @@
1
- ---
2
- license: apache-2.0
3
- base_model: google/vit-base-patch16-224
4
- tags:
5
- - generated_from_trainer
6
- datasets:
7
- - imagefolder
8
- metrics:
9
- - accuracy
10
- model-index:
11
- - name: google-vit-base-patch16-224-Waste-O-I-classification
12
- results:
13
- - task:
14
- name: Image Classification
15
- type: image-classification
16
- dataset:
17
- name: imagefolder
18
- type: imagefolder
19
- config: default
20
- split: train
21
- args: default
22
- metrics:
23
- - name: Accuracy
24
- type: accuracy
25
- value: 0.956
26
- ---
27
-
28
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
- should probably proofread and complete it, then remove this comment. -->
30
-
31
- # google-vit-base-patch16-224-Waste-O-I-classification
32
-
33
- This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
34
- It achieves the following results on the evaluation set:
35
- - Accuracy: 0.956
36
- - Loss: 0.3036
37
-
38
- ## Model description
39
-
40
- More information needed
41
-
42
- ## Intended uses & limitations
43
-
44
- More information needed
45
-
46
- ## Training and evaluation data
47
-
48
- More information needed
49
-
50
- ## Training procedure
51
-
52
- ### Training hyperparameters
53
-
54
- The following hyperparameters were used during training:
55
- - learning_rate: 0.0002
56
- - train_batch_size: 8
57
- - eval_batch_size: 8
58
- - seed: 42
59
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
- - lr_scheduler_type: linear
61
- - num_epochs: 4
62
-
63
- ### Training results
64
-
65
- | Training Loss | Epoch | Step | Accuracy | Validation Loss |
66
- |:-------------:|:------:|:-----:|:--------:|:---------------:|
67
- | 0.2168 | 0.1580 | 1000 | 0.9525 | 0.1303 |
68
- | 0.196 | 0.3159 | 2000 | 0.941 | 0.1638 |
69
- | 0.1993 | 0.4739 | 3000 | 0.9285 | 0.2206 |
70
- | 0.1849 | 0.6318 | 4000 | 0.9225 | 0.2288 |
71
- | 0.199 | 0.7898 | 5000 | 0.9105 | 0.3331 |
72
- | 0.2171 | 0.9477 | 6000 | 0.944 | 0.1582 |
73
- | 0.1209 | 1.1057 | 7000 | 0.9495 | 0.1887 |
74
- | 0.114 | 1.2636 | 8000 | 0.932 | 0.1950 |
75
- | 0.1268 | 1.4216 | 9000 | 0.9335 | 0.1965 |
76
- | 0.1272 | 1.5795 | 10000 | 0.9165 | 0.3112 |
77
- | 0.1003 | 1.7375 | 11000 | 0.9575 | 0.1353 |
78
- | 0.0844 | 1.8954 | 12000 | 0.9345 | 0.2635 |
79
- | 0.0757 | 2.0534 | 13000 | 0.952 | 0.1434 |
80
- | 0.053 | 2.2113 | 14000 | 0.933 | 0.3203 |
81
- | 0.0994 | 2.3693 | 15000 | 0.9405 | 0.2165 |
82
- | 0.0248 | 2.5272 | 16000 | 0.951 | 0.2400 |
83
- | 0.0842 | 2.6852 | 17000 | 0.906 | 0.4092 |
84
- | 0.0733 | 2.8432 | 18000 | 0.9515 | 0.1937 |
85
- | 0.0542 | 3.0011 | 19000 | 0.938 | 0.2911 |
86
- | 0.0202 | 3.1591 | 20000 | 0.936 | 0.3648 |
87
- | 0.0237 | 3.3170 | 21000 | 0.9355 | 0.3618 |
88
- | 0.0294 | 3.4750 | 22000 | 0.9255 | 0.4209 |
89
- | 0.0375 | 3.6329 | 23000 | 0.943 | 0.2840 |
90
- | 0.0176 | 3.7909 | 24000 | 0.9525 | 0.2604 |
91
- | 0.0252 | 3.9488 | 25000 | 0.9515 | 0.2500 |
92
- | 0.0024 | 4.1068 | 26000 | 0.9545 | 0.2892 |
93
- | 0.0119 | 4.2647 | 27000 | 0.956 | 0.3036 |
94
-
95
-
96
- ### Framework versions
97
-
98
- - Transformers 4.44.0
99
- - Pytorch 2.4.0+cpu
100
- - Datasets 2.20.0
101
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - MiguelCalderon/TGdataTrain
8
+ - MiguelCalderon/TGdataTest
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: google-vit-base-patch16-224-Waste-O-I-classification
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.956
27
+ language:
28
+ - es
29
+ - en
30
+ pipeline_tag: image-classification
31
+ library_name: transformers
32
+ ---
33
+
34
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
35
+ should probably proofread and complete it, then remove this comment. -->
36
+
37
+ # google-vit-base-patch16-224-Waste-O-I-classification
38
+
39
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
40
+ It achieves the following results on the evaluation set:
41
+ - Accuracy: 0.956
42
+ - Loss: 0.3036
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 0.0002
62
+ - train_batch_size: 8
63
+ - eval_batch_size: 8
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 4
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
72
+ |:-------------:|:------:|:-----:|:--------:|:---------------:|
73
+ | 0.2168 | 0.1580 | 1000 | 0.9525 | 0.1303 |
74
+ | 0.196 | 0.3159 | 2000 | 0.941 | 0.1638 |
75
+ | 0.1993 | 0.4739 | 3000 | 0.9285 | 0.2206 |
76
+ | 0.1849 | 0.6318 | 4000 | 0.9225 | 0.2288 |
77
+ | 0.199 | 0.7898 | 5000 | 0.9105 | 0.3331 |
78
+ | 0.2171 | 0.9477 | 6000 | 0.944 | 0.1582 |
79
+ | 0.1209 | 1.1057 | 7000 | 0.9495 | 0.1887 |
80
+ | 0.114 | 1.2636 | 8000 | 0.932 | 0.1950 |
81
+ | 0.1268 | 1.4216 | 9000 | 0.9335 | 0.1965 |
82
+ | 0.1272 | 1.5795 | 10000 | 0.9165 | 0.3112 |
83
+ | 0.1003 | 1.7375 | 11000 | 0.9575 | 0.1353 |
84
+ | 0.0844 | 1.8954 | 12000 | 0.9345 | 0.2635 |
85
+ | 0.0757 | 2.0534 | 13000 | 0.952 | 0.1434 |
86
+ | 0.053 | 2.2113 | 14000 | 0.933 | 0.3203 |
87
+ | 0.0994 | 2.3693 | 15000 | 0.9405 | 0.2165 |
88
+ | 0.0248 | 2.5272 | 16000 | 0.951 | 0.2400 |
89
+ | 0.0842 | 2.6852 | 17000 | 0.906 | 0.4092 |
90
+ | 0.0733 | 2.8432 | 18000 | 0.9515 | 0.1937 |
91
+ | 0.0542 | 3.0011 | 19000 | 0.938 | 0.2911 |
92
+ | 0.0202 | 3.1591 | 20000 | 0.936 | 0.3648 |
93
+ | 0.0237 | 3.3170 | 21000 | 0.9355 | 0.3618 |
94
+ | 0.0294 | 3.4750 | 22000 | 0.9255 | 0.4209 |
95
+ | 0.0375 | 3.6329 | 23000 | 0.943 | 0.2840 |
96
+ | 0.0176 | 3.7909 | 24000 | 0.9525 | 0.2604 |
97
+ | 0.0252 | 3.9488 | 25000 | 0.9515 | 0.2500 |
98
+ | 0.0024 | 4.1068 | 26000 | 0.9545 | 0.2892 |
99
+ | 0.0119 | 4.2647 | 27000 | 0.956 | 0.3036 |
100
+
101
+
102
+ ### Framework versions
103
+
104
+ - Transformers 4.44.0
105
+ - Pytorch 2.4.0+cpu
106
+ - Datasets 2.20.0
107
+ - Tokenizers 0.19.1