MiguelCalderon commited on
Commit
83ec2dd
1 Parent(s): 5ec47ef

Model save

Browse files
Files changed (4) hide show
  1. README.md +101 -0
  2. all_results.json +14 -0
  3. eval_results.json +8 -0
  4. train_results.json +8 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: google-vit-base-patch16-224-Waste-O-I-classification
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.956
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # google-vit-base-patch16-224-Waste-O-I-classification
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Accuracy: 0.956
36
+ - Loss: 0.3036
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0002
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 4
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
66
+ |:-------------:|:------:|:-----:|:--------:|:---------------:|
67
+ | 0.2168 | 0.1580 | 1000 | 0.9525 | 0.1303 |
68
+ | 0.196 | 0.3159 | 2000 | 0.941 | 0.1638 |
69
+ | 0.1993 | 0.4739 | 3000 | 0.9285 | 0.2206 |
70
+ | 0.1849 | 0.6318 | 4000 | 0.9225 | 0.2288 |
71
+ | 0.199 | 0.7898 | 5000 | 0.9105 | 0.3331 |
72
+ | 0.2171 | 0.9477 | 6000 | 0.944 | 0.1582 |
73
+ | 0.1209 | 1.1057 | 7000 | 0.9495 | 0.1887 |
74
+ | 0.114 | 1.2636 | 8000 | 0.932 | 0.1950 |
75
+ | 0.1268 | 1.4216 | 9000 | 0.9335 | 0.1965 |
76
+ | 0.1272 | 1.5795 | 10000 | 0.9165 | 0.3112 |
77
+ | 0.1003 | 1.7375 | 11000 | 0.9575 | 0.1353 |
78
+ | 0.0844 | 1.8954 | 12000 | 0.9345 | 0.2635 |
79
+ | 0.0757 | 2.0534 | 13000 | 0.952 | 0.1434 |
80
+ | 0.053 | 2.2113 | 14000 | 0.933 | 0.3203 |
81
+ | 0.0994 | 2.3693 | 15000 | 0.9405 | 0.2165 |
82
+ | 0.0248 | 2.5272 | 16000 | 0.951 | 0.2400 |
83
+ | 0.0842 | 2.6852 | 17000 | 0.906 | 0.4092 |
84
+ | 0.0733 | 2.8432 | 18000 | 0.9515 | 0.1937 |
85
+ | 0.0542 | 3.0011 | 19000 | 0.938 | 0.2911 |
86
+ | 0.0202 | 3.1591 | 20000 | 0.936 | 0.3648 |
87
+ | 0.0237 | 3.3170 | 21000 | 0.9355 | 0.3618 |
88
+ | 0.0294 | 3.4750 | 22000 | 0.9255 | 0.4209 |
89
+ | 0.0375 | 3.6329 | 23000 | 0.943 | 0.2840 |
90
+ | 0.0176 | 3.7909 | 24000 | 0.9525 | 0.2604 |
91
+ | 0.0252 | 3.9488 | 25000 | 0.9515 | 0.2500 |
92
+ | 0.0024 | 4.1068 | 26000 | 0.9545 | 0.2892 |
93
+ | 0.0119 | 4.2647 | 27000 | 0.956 | 0.3036 |
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - Transformers 4.44.0
99
+ - Pytorch 2.4.0+cpu
100
+ - Datasets 2.20.0
101
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.941,
4
+ "eval_loss": 0.3915315866470337,
5
+ "eval_model_preparation_time": 0.006,
6
+ "eval_runtime": 1091.8268,
7
+ "eval_samples_per_second": 1.832,
8
+ "eval_steps_per_second": 0.229,
9
+ "total_flos": 1.962407144999928e+19,
10
+ "train_loss": 0.005569123022438927,
11
+ "train_runtime": 203795.3117,
12
+ "train_samples_per_second": 1.243,
13
+ "train_steps_per_second": 0.155
14
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.941,
4
+ "eval_loss": 0.3915315866470337,
5
+ "eval_runtime": 1091.8268,
6
+ "eval_samples_per_second": 1.832,
7
+ "eval_steps_per_second": 0.229
8
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "total_flos": 1.962407144999928e+19,
4
+ "train_loss": 0.005569123022438927,
5
+ "train_runtime": 203795.3117,
6
+ "train_samples_per_second": 1.243,
7
+ "train_steps_per_second": 0.155
8
+ }