File size: 1,912 Bytes
76e1ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fine_tuned_bert_dreadit
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_bert_dreadit

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6964
- Accuracy: 0.7584

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0515        | 1.0   | 178  | 1.0425          | 0.7388   |
| 0.0988        | 2.0   | 356  | 1.1394          | 0.7725   |
| 0.0008        | 3.0   | 534  | 1.3705          | 0.7725   |
| 0.4585        | 4.0   | 712  | 1.2983          | 0.7809   |
| 0.0003        | 5.0   | 890  | 1.4867          | 0.7753   |
| 0.0003        | 6.0   | 1068 | 1.5385          | 0.7837   |
| 0.0002        | 7.0   | 1246 | 1.4708          | 0.7781   |
| 0.0002        | 8.0   | 1424 | 1.6836          | 0.7640   |
| 0.0002        | 9.0   | 1602 | 1.7276          | 0.7584   |
| 0.0002        | 10.0  | 1780 | 1.6964          | 0.7584   |


### Framework versions

- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2