--- base_model: migtissera/Tess-70B-v1.6 inference: false license: llama2 metrics: - accuracy --- This is a BF16 and pruned version of [migtissera/Tess-70B-v1.6](https://huggingface.co/migtissera/Tess-70B-v1.6) . [migtissera/Tess-70B-v1.6](https://huggingface.co/migtissera/Tess-70B-v1.6) has 69 billion params and Covasna-0.1 has 41.6 billion (~60.3% param size) # Steps to replicate: Use [laserQlora.ipynb](https://github.com/cognitivecomputations/laserRMT/blob/main/laserQlora.ipynb) from [cognitivecomputations/laserRMT](https://github.com/cognitivecomputations/laserRMT) to determine which layers should be eliminated. Adapt the script for `migtissera/Tess-70B-v1.6` by replacing `model_name = "mistralai/Mistral-7B-v0.1"` with `model_name = "migtissera/Tess-70B-v1.6"` and `layer_numbers = list(range(31, -1, -1))` with `layer_numbers = list(range(79, -1, -1))`, [79 being the last recurrent layer index Tess-70B-v1.6 has](https://huggingface.co/migtissera/Tess-70B-v1.6?show_tensors=true). Then look for the layer indexes where self_attn.v_proj snr is Infinity and eliminate those layers using [mergekit](https://github.com/arcee-ai/mergekit). Here is the mergekit config: ```yml slices: - sources: - model: "migtissera/Tess-70B-v1.6" layer_range: [0, 7] - sources: - model: "migtissera/Tess-70B-v1.6" layer_range: [8, 9] - sources: - model: "migtissera/Tess-70B-v1.6" layer_range: [12, 29] - sources: - model: "migtissera/Tess-70B-v1.6" layer_range: [31, 32] - sources: - model: "migtissera/Tess-70B-v1.6" layer_range: [33, 45] - sources: - model: "migtissera/Tess-70B-v1.6" layer_range: [50, 52] - sources: - model: "migtissera/Tess-70B-v1.6" layer_range: [60, 61] - sources: - model: "migtissera/Tess-70B-v1.6" layer_range: [67, 68] - sources: - model: "migtissera/Tess-70B-v1.6" layer_range: [74, 80] merge_method: passthrough dtype: bfloat16 ``` GGUF: [Covasna-0.1-GGUF](https://huggingface.co/mradermacher/Covasna-0.1-GGUF)