Mihaiii commited on
Commit
3de2f72
1 Parent(s): 88e810a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -76
README.md CHANGED
@@ -1,89 +1,22 @@
1
  ---
 
2
  library_name: sentence-transformers
3
  pipeline_tag: sentence-similarity
4
  tags:
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
8
-
9
  ---
 
10
 
11
- # {MODEL_NAME}
12
-
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
-
15
- <!--- Describe your model here -->
16
-
17
- ## Usage (Sentence-Transformers)
18
-
19
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
-
21
- ```
22
- pip install -U sentence-transformers
23
- ```
24
-
25
- Then you can use the model like this:
26
-
27
- ```python
28
- from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
-
31
- model = SentenceTransformer('{MODEL_NAME}')
32
- embeddings = model.encode(sentences)
33
- print(embeddings)
34
- ```
35
-
36
-
37
-
38
- ## Evaluation Results
39
-
40
- <!--- Describe how your model was evaluated -->
41
-
42
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
43
-
44
-
45
- ## Training
46
- The model was trained with the parameters:
47
-
48
- **DataLoader**:
49
-
50
- `torch.utils.data.dataloader.DataLoader` of length 113 with parameters:
51
- ```
52
- {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
53
- ```
54
-
55
- **Loss**:
56
-
57
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
58
-
59
- Parameters of the fit()-Method:
60
- ```
61
- {
62
- "epochs": 1,
63
- "evaluation_steps": 1000,
64
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
65
- "max_grad_norm": 1,
66
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
67
- "optimizer_params": {
68
- "lr": 2e-05
69
- },
70
- "scheduler": "WarmupLinear",
71
- "steps_per_epoch": null,
72
- "warmup_steps": 500,
73
- "weight_decay": 0.01
74
- }
75
- ```
76
 
 
77
 
78
- ## Full Model Architecture
79
- ```
80
- SentenceTransformer(
81
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
82
- (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
83
- (2): Normalize()
84
- )
85
- ```
86
 
87
- ## Citing & Authors
88
 
89
- <!--- Describe where people can find more information -->
 
1
  ---
2
+ license: mit
3
  library_name: sentence-transformers
4
  pipeline_tag: sentence-similarity
5
  tags:
6
  - sentence-transformers
7
  - feature-extraction
8
  - sentence-similarity
9
+ - mteb
10
  ---
11
+ # Wartortle
12
 
13
+ Wartortle is a distill of [bge-base-en-v1.5](BAAI/bge-base-en-v1.5).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ ## Intended purpose
16
 
17
+ <span style="color:blue">This model is designed for use in semantic-autocomplete ([click here for demo](https://mihaiii.github.io/semantic-autocomplete/)).</span>
18
+ Make sure you also pass `pipelineParams={{ pooling: "cls", normalize: true }}` since the default pooling in the component is mean.
 
 
 
 
 
 
19
 
20
+ ## Usage
21
 
22
+ Other than within [semantic-autocomplete](https://github.com/Mihaiii/semantic-autocomplete), you can use this model same as [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5#usage).