File size: 3,598 Bytes
88e5db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: apache-2.0
base_model: google/long-t5-tglobal-base
tags:
- generated_from_trainer
datasets:
- eur-lex-sum
model-index:
- name: LongT5_no_extraction_V1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LongT5_no_extraction_V1

This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the eur-lex-sum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3639

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 3.2571        | 0.9963  | 68   | 1.8571          |
| 2.6516        | 1.9927  | 136  | 1.7238          |
| 2.2687        | 2.9890  | 204  | 1.6153          |
| 2.0466        | 4.0     | 273  | 1.5414          |
| 1.9659        | 4.9963  | 341  | 1.4955          |
| 1.8813        | 5.9927  | 409  | 1.4752          |
| 1.8277        | 6.9890  | 477  | 1.4571          |
| 1.7626        | 8.0     | 546  | 1.4437          |
| 1.7528        | 8.9963  | 614  | 1.4315          |
| 1.7249        | 9.9927  | 682  | 1.4229          |
| 1.6981        | 10.9890 | 750  | 1.4126          |
| 1.6559        | 12.0    | 819  | 1.4061          |
| 1.6599        | 12.9963 | 887  | 1.3983          |
| 1.6465        | 13.9927 | 955  | 1.3994          |
| 1.6282        | 14.9890 | 1023 | 1.3923          |
| 1.5906        | 16.0    | 1092 | 1.3873          |
| 1.6035        | 16.9963 | 1160 | 1.3878          |
| 1.5909        | 17.9927 | 1228 | 1.3851          |
| 1.5802        | 18.9890 | 1296 | 1.3799          |
| 1.5481        | 20.0    | 1365 | 1.3860          |
| 1.5607        | 20.9963 | 1433 | 1.3745          |
| 1.5517        | 21.9927 | 1501 | 1.3736          |
| 1.5436        | 22.9890 | 1569 | 1.3735          |
| 1.5126        | 24.0    | 1638 | 1.3728          |
| 1.5289        | 24.9963 | 1706 | 1.3739          |
| 1.5234        | 25.9927 | 1774 | 1.3706          |
| 1.5179        | 26.9890 | 1842 | 1.3671          |
| 1.4908        | 28.0    | 1911 | 1.3680          |
| 1.5057        | 28.9963 | 1979 | 1.3688          |
| 1.5026        | 29.9927 | 2047 | 1.3649          |
| 1.498         | 30.9890 | 2115 | 1.3662          |
| 1.4866        | 32.0    | 2184 | 1.3655          |
| 1.493         | 32.9963 | 2252 | 1.3644          |
| 1.4877        | 33.9927 | 2320 | 1.3669          |
| 1.4858        | 34.9890 | 2388 | 1.3650          |
| 1.465         | 36.0    | 2457 | 1.3649          |
| 1.4822        | 36.9963 | 2525 | 1.3647          |
| 1.4797        | 37.9927 | 2593 | 1.3644          |
| 1.4803        | 38.9890 | 2661 | 1.3640          |
| 1.4548        | 39.8535 | 2720 | 1.3639          |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.19.1