File size: 1,836 Bytes
742bdcd
 
bc84d58
742bdcd
 
 
 
 
 
 
 
 
 
 
 
bc84d58
742bdcd
7a0f55f
742bdcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc84d58
742bdcd
 
 
 
 
7a0f55f
 
 
 
 
 
 
 
742bdcd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: MikeMpapa/4_bar_lmd_clean_custom_epochs10
tags:
- generated_from_trainer
model-index:
- name: 4_bar_lmd_clean_custom_epochs10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 4_bar_lmd_clean_custom_epochs10

This model is a fine-tuned version of [MikeMpapa/4_bar_lmd_clean_custom_epochs10](https://huggingface.co/MikeMpapa/4_bar_lmd_clean_custom_epochs10) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7890

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 48
- eval_batch_size: 32
- seed: 1
- gradient_accumulation_steps: 2
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 81

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.9313        | 9.42  | 12000 | 0.9207          |
| 0.9129        | 18.84 | 24000 | 0.9018          |
| 0.8847        | 28.26 | 36000 | 0.8786          |
| 0.8537        | 37.68 | 48000 | 0.8541          |
| 0.8177        | 47.1  | 60000 | 0.8412          |
| 0.7778        | 56.51 | 72000 | 0.8111          |
| 0.7385        | 65.93 | 84000 | 0.7931          |
| 0.7079        | 75.35 | 96000 | 0.7890          |


### Framework versions

- Transformers 4.36.0
- Pytorch 2.1.0
- Datasets 2.15.0
- Tokenizers 0.15.1