--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - trl - sft - generated_from_trainer datasets: - generator model-index: - name: llama3-8b-instruct-wo-kqa_golden-iter-sft-step1 results: [] --- # llama3-8b-instruct-wo-kqa_golden-iter-sft-step1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.4835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6774 | 1.0 | 11 | 0.5812 | | 0.3859 | 2.0 | 22 | 0.4977 | | 0.2871 | 3.0 | 33 | 0.4835 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2