Update README.md
Browse files
README.md
CHANGED
@@ -13,7 +13,7 @@ pipeline_tag: text-generation
|
|
13 |
|
14 |
# Pretrain-Qwen-200M
|
15 |
|
16 |
-
[paper]() | [code](https://github.com/thu-coai/MiniPLM)
|
17 |
|
18 |
**Pretrain-Qwen-200M** is a 200M model with QWen achitecture conventionally pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) for 50B tokens.
|
19 |
|
@@ -34,4 +34,11 @@ MiniPLM models achieves better performance given the same computation and scales
|
|
34 |
|
35 |
## Citation
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Pretrain-Qwen-200M
|
15 |
|
16 |
+
[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM)
|
17 |
|
18 |
**Pretrain-Qwen-200M** is a 200M model with QWen achitecture conventionally pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) for 50B tokens.
|
19 |
|
|
|
34 |
|
35 |
## Citation
|
36 |
|
37 |
+
```bibtext
|
38 |
+
@article{miniplm,
|
39 |
+
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models},
|
40 |
+
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
|
41 |
+
journal={arXiv preprint arXiv:2410.17215},
|
42 |
+
year={2024}
|
43 |
+
}
|
44 |
+
```
|