--- library_name: transformers license: apache-2.0 datasets: - monology/pile-uncopyrighted - MiniLLM/pile-tokenized language: - en metrics: - accuracy pipeline_tag: text-generation --- # VanillaKD-Pretrain-Qwen-1.2B [paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM) **VanillaKD-Pretrain-Qwen-1.2B** is a 1.2B model with Qwen achitecture pre-trained with vanilla token-level knowledge distillation on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) for 50B tokens. The teacher model is [Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B). We also open-source the tokenized [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-tokenized) for reproducibility. **It is used as the baseline for [MiniLLM-Qwen-1.2B](https://huggingface.co/MiniLLM/MiniPLM-Qwen-1.2B)** ## Evaluation MiniPLM models achieves better performance given the same computation and scales well across model sizes:

## Other Baselines + [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-Qwen-1.2B) ## Citation ```bibtext @article{miniplm, title={MiniPLM: Knowledge Distillation for Pre-Training Language Models}, author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang}, journal={arXiv preprint arXiv:2410.17215}, year={2024} } ```