File size: 1,502 Bytes
23c1156 5ba71ad 23c1156 5ba71ad 23c1156 5ba71ad 23c1156 5ba71ad 23c1156 5ba71ad 23c1156 5ba71ad 23c1156 5ba71ad 23c1156 5ba71ad 23c1156 5ba71ad 23c1156 5ba71ad 23c1156 5ba71ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
library_name: transformers
license: apache-2.0
datasets:
- monology/pile-uncopyrighted
- MiniLLM/pile-tokenized
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---
# VanillaKD-Pretrain-Qwen-200M
[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM)
**VanillaKD-Pretrain-Qwen-200M** is a 200M model with Qwen achitecture pre-trained with vanilla token-level knowledge distillation on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) for 50B tokens. The teacher model is [Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B).
We also open-source the tokenized [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-tokenized) for reproducibility.
**It is used as the baseline for [MiniLLM-Qwen-200M](https://huggingface.co/MiniLLM/MiniPLM-Qwen-200M)**
## Evaluation
MiniPLM models achieves better performance given the same computation and scales well across model sizes:
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000">
</p>
## Other Baselines
+ [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-Qwen-200M)
## Citation
```bibtext
@article{miniplm,
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models},
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
journal={arXiv preprint arXiv:2410.17215},
year={2024}
}
``` |