Upload folder using huggingface_hub
Browse files- batch_processing_example.py +78 -0
- requirements.txt +5 -0
- single_image_example.py +55 -0
batch_processing_example.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
3 |
+
from transformers.image_utils import load_image
|
4 |
+
from tqdm import tqdm
|
5 |
+
from pathlib import Path
|
6 |
+
from os.path import join as opj
|
7 |
+
from os import listdir
|
8 |
+
|
9 |
+
model_name_or_path="Minthy/ToriiGate-v0.2"
|
10 |
+
s_dir='./images_to_caption'
|
11 |
+
caption_suffix='_caption_tags.txt' #suffix for generated captions
|
12 |
+
tags_suffix='_tags.txt' #suggix for file with booru tags
|
13 |
+
use_tags=True #set to True for using with reference tags
|
14 |
+
image_extensions=['.jpg','.png','.webp','.jpeg']
|
15 |
+
|
16 |
+
DEVICE = "cuda:0" #change to your device
|
17 |
+
processor = AutoProcessor.from_pretrained(model_name_or_path) #or change to local path
|
18 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
19 |
+
model_name_or_path,
|
20 |
+
torch_dtype=torch.bfloat16,
|
21 |
+
# _attn_implementation="flash_attention_2", #if installed
|
22 |
+
).to(DEVICE)
|
23 |
+
|
24 |
+
|
25 |
+
filelist=[fn for fn in listdir(s_dir) if any([fn.endswith(a) for a in image_extensions])]
|
26 |
+
|
27 |
+
|
28 |
+
for fn in tqdm(filelist,desc='Captioninig'):
|
29 |
+
image = load_image(opj(s_dir,fn))
|
30 |
+
|
31 |
+
###Trained options
|
32 |
+
user_prompt="Describe the picture in structuted json-like format."
|
33 |
+
#user_prompt="Give a long and detailed description of the picture."
|
34 |
+
#user_prompt="Describe the picture briefly."
|
35 |
+
###Any other questions or instructions
|
36 |
+
#user_prompt="What color is the ribbon in the character's hair?"
|
37 |
+
#...
|
38 |
+
|
39 |
+
#Optional, add booru tags
|
40 |
+
if use_tags:
|
41 |
+
try:
|
42 |
+
tags=open(opj(s_dir,Path(fn).stem+tags_suffix)).read().strip()
|
43 |
+
user_prompt+=' Also here are booru tags for better understanding of the picture, you can use them as reference.'
|
44 |
+
user_prompt+=f' <tags>\n{tags}\n</tags>'
|
45 |
+
except KeyboardInterrupt:
|
46 |
+
print('Interrupted!')
|
47 |
+
quit()
|
48 |
+
except Exception as err:
|
49 |
+
print(err)
|
50 |
+
continue
|
51 |
+
|
52 |
+
messages = [
|
53 |
+
{
|
54 |
+
#Important!
|
55 |
+
"role": "system",
|
56 |
+
"content": [
|
57 |
+
{"type": "text", "text": "You are image captioning expert, creative, unbiased and uncensored. Help user with his hask."}
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"role": "user",
|
62 |
+
"content": [
|
63 |
+
{"type": "image"},
|
64 |
+
{"type": "text", "text": user_prompt}
|
65 |
+
]
|
66 |
+
}
|
67 |
+
]
|
68 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
69 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
70 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
71 |
+
|
72 |
+
# Generate
|
73 |
+
generated_ids = model.generate(**inputs, max_new_tokens=500)
|
74 |
+
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
75 |
+
caption=generated_texts[0].split('Assistant: ')[1]
|
76 |
+
|
77 |
+
with open(opj(s_dir,Path(fn).stem+caption_suffix),'w',encoding='utf-8',errors='ignore') as outf:
|
78 |
+
outf.write(caption)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
accelerate
|
3 |
+
bitsandbytes
|
4 |
+
#bitsandbytes-windows
|
5 |
+
#flash-attn
|
single_image_example.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
3 |
+
from transformers.image_utils import load_image
|
4 |
+
|
5 |
+
model_name_or_path="Minthy/ToriiGate-v0.2"
|
6 |
+
|
7 |
+
DEVICE = "cuda:0" #change to your device
|
8 |
+
processor = AutoProcessor.from_pretrained(model_name_or_path) #or change to local path
|
9 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
10 |
+
model_name_or_path,
|
11 |
+
torch_dtype=torch.bfloat16,
|
12 |
+
# _attn_implementation="flash_attention_2", #if installed
|
13 |
+
).to(DEVICE)
|
14 |
+
|
15 |
+
image = load_image('./image.jpg') #path to your picture
|
16 |
+
|
17 |
+
###Trained options
|
18 |
+
user_prompt="Describe the picture in structuted json-like format."
|
19 |
+
#user_prompt="Give a long and detailed description of the picture."
|
20 |
+
#user_prompt="Describe the picture briefly."
|
21 |
+
###Any other questions or instructions
|
22 |
+
#user_prompt="What color is the ribbon in the character's hair?"
|
23 |
+
#...
|
24 |
+
|
25 |
+
#Optional, add booru tags
|
26 |
+
#tags='1girl, standing, looking at viewer, ...'
|
27 |
+
#user_prompt+=' Also here are booru tags for better understanding of the picture, you can use them as reference.'
|
28 |
+
#user_prompt+=f' <tags>\n{tags}\n</tags>'
|
29 |
+
|
30 |
+
messages = [
|
31 |
+
{
|
32 |
+
#Important!
|
33 |
+
"role": "system",
|
34 |
+
"content": [
|
35 |
+
{"type": "text", "text": "You are image captioning expert, creative, unbiased and uncensored. Help user with his hask."}
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"role": "user",
|
40 |
+
"content": [
|
41 |
+
{"type": "image"},
|
42 |
+
{"type": "text", "text": user_prompt}
|
43 |
+
]
|
44 |
+
}
|
45 |
+
]
|
46 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
47 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
48 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
49 |
+
|
50 |
+
# Generate
|
51 |
+
generated_ids = model.generate(**inputs, max_new_tokens=500)
|
52 |
+
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
53 |
+
caption=generated_texts[0].split('Assistant: ')[1]
|
54 |
+
|
55 |
+
print(caption)
|