Mit1208 commited on
Commit
4185a2d
1 Parent(s): cb956be

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -1
README.md CHANGED
@@ -56,10 +56,12 @@ base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2",device_map="
56
  model = PeftModel.from_pretrained(base_model, "Mit1208/phi-2-universal-NER", trust_remote_code=True)
57
  tokenizer = AutoTokenizer.from_pretrained("Mit1208/phi-2-universal-NER", trust_remote_code=True)
58
 
 
 
59
  conversations = [ { "from": "human", "value": "Text: Mit Patel here from India"}, {"from": "gpt", "value": "I've read this text."},
60
  {"from":"human", "value":"what is a name of the person in the text?"}]
61
  inference_text = tokenizer.apply_chat_template(conversations, tokenize=False) + '<|im_start|>gpt:\n'
62
- inputs = tokenizer(inference_text, return_tensors="pt", return_attention_mask=False)
63
 
64
  class EosListStoppingCriteria(StoppingCriteria):
65
  def __init__(self, eos_sequence = tokenizer.encode("<|im_end|>")):
 
56
  model = PeftModel.from_pretrained(base_model, "Mit1208/phi-2-universal-NER", trust_remote_code=True)
57
  tokenizer = AutoTokenizer.from_pretrained("Mit1208/phi-2-universal-NER", trust_remote_code=True)
58
 
59
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
60
+
61
  conversations = [ { "from": "human", "value": "Text: Mit Patel here from India"}, {"from": "gpt", "value": "I've read this text."},
62
  {"from":"human", "value":"what is a name of the person in the text?"}]
63
  inference_text = tokenizer.apply_chat_template(conversations, tokenize=False) + '<|im_start|>gpt:\n'
64
+ inputs = tokenizer(inference_text, return_tensors="pt", return_attention_mask=False).to(device)
65
 
66
  class EosListStoppingCriteria(StoppingCriteria):
67
  def __init__(self, eos_sequence = tokenizer.encode("<|im_end|>")):