File size: 2,069 Bytes
5207bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328d5cd
5207bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328d5cd
5207bab
 
328d5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5207bab
 
 
328d5cd
5207bab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---

library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
model-index:
- name: speecht5_finetuned_emirhan_tr
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_emirhan_tr



This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5641

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 4

- eval_batch_size: 2

- seed: 42

- gradient_accumulation_steps: 8

- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100

- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7879        | 0.3972 | 100  | 0.6982          |
| 0.7078        | 0.7944 | 200  | 0.6603          |
| 0.6728        | 1.1917 | 300  | 0.6420          |
| 0.646         | 1.5889 | 400  | 0.5979          |
| 0.6276        | 1.9861 | 500  | 0.5954          |
| 0.6213        | 2.3833 | 600  | 0.5852          |
| 0.6161        | 2.7805 | 700  | 0.5805          |
| 0.6043        | 3.1778 | 800  | 0.5701          |
| 0.6012        | 3.5750 | 900  | 0.5624          |
| 0.5951        | 3.9722 | 1000 | 0.5641          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.0+cu118
- Datasets 3.0.0
- Tokenizers 0.19.1