File size: 33,245 Bytes
9284eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1115700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en-v1.5
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Ndege mwenye mdomo mrefu katikati ya ndege.
  sentences:
  - Panya anayekimbia juu ya gurudumu.
  - Mtu anashindana katika mashindano ya mbio.
  - Ndege anayeruka.
- source_sentence: Msichana mchanga mwenye nywele nyeusi anakabili kamera na kushikilia
    mfuko wa karatasi wakati amevaa shati la machungwa na mabawa ya kipepeo yenye
    rangi nyingi.
  sentences:
  - Mwanamke mzee anakataa kupigwa picha.
  - mtu akila na mvulana mdogo kwenye kijia cha jiji
  - Msichana mchanga anakabili kamera.
- source_sentence: Wanawake na watoto wameketi nje katika kivuli wakati kikundi cha
    watoto wadogo wameketi ndani katika kivuli.
  sentences:
  - Mwanamke na watoto na kukaa chini.
  - Mwanamke huyo anakimbia.
  - Watu wanasafiri kwa baiskeli.
- source_sentence: Mtoto mdogo anaruka mikononi mwa mwanamke aliyevalia suti nyeusi
    ya kuogelea akiwa kwenye dimbwi.
  sentences:
  - Mtoto akiruka mikononi mwa mwanamke aliyevalia suti ya kuogelea kwenye dimbwi.
  - Someone is holding oranges and walking
  - Mama na binti wakinunua viatu.
- source_sentence: Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa
    kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi
    nyuma.
  sentences:
  - tai huruka
  - mwanamume na mwanamke wenye mikoba
  - Wanaume wawili wameketi karibu na mwanamke.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.6831671531193453
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.677143022633225
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6891948944875336
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6892226446007472
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6916897298195501
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6916850273924392
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6418376172951465
      name: Pearson Dot
    - type: spearman_dot
      value: 0.628581703082033
      name: Spearman Dot
    - type: pearson_max
      value: 0.6916897298195501
      name: Pearson Max
    - type: spearman_max
      value: 0.6916850273924392
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.6753009254241098
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6731049071307844
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6906782473185179
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6927883369656496
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6933649652149252
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.694111832507592
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.600449101550258
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5857671058687308
      name: Spearman Dot
    - type: pearson_max
      value: 0.6933649652149252
      name: Pearson Max
    - type: spearman_max
      value: 0.694111832507592
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.6546200020168988
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6523958945855459
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6837289470688535
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6796775815725002
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6861328219241016
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6815842202083926
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5120576666695955
      name: Pearson Dot
    - type: spearman_dot
      value: 0.49141347385563683
      name: Spearman Dot
    - type: pearson_max
      value: 0.6861328219241016
      name: Pearson Max
    - type: spearman_max
      value: 0.6815842202083926
      name: Spearman Max
---

# SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - Mollel/swahili-n_li-triplet-swh-eng
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Mollel/MultiLinguSwahili-bge-small-en-v1.5-nli-matryoshka")
# Run inference
sentences = [
    'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.',
    'mwanamume na mwanamke wenye mikoba',
    'tai huruka',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6832     |
| **spearman_cosine** | **0.6771** |
| pearson_manhattan   | 0.6892     |
| spearman_manhattan  | 0.6892     |
| pearson_euclidean   | 0.6917     |
| spearman_euclidean  | 0.6917     |
| pearson_dot         | 0.6418     |
| spearman_dot        | 0.6286     |
| pearson_max         | 0.6917     |
| spearman_max        | 0.6917     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6753     |
| **spearman_cosine** | **0.6731** |
| pearson_manhattan   | 0.6907     |
| spearman_manhattan  | 0.6928     |
| pearson_euclidean   | 0.6934     |
| spearman_euclidean  | 0.6941     |
| pearson_dot         | 0.6004     |
| spearman_dot        | 0.5858     |
| pearson_max         | 0.6934     |
| spearman_max        | 0.6941     |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6546     |
| **spearman_cosine** | **0.6524** |
| pearson_manhattan   | 0.6837     |
| spearman_manhattan  | 0.6797     |
| pearson_euclidean   | 0.6861     |
| spearman_euclidean  | 0.6816     |
| pearson_dot         | 0.5121     |
| spearman_dot        | 0.4914     |
| pearson_max         | 0.6861     |
| spearman_max        | 0.6816     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Mollel/swahili-n_li-triplet-swh-eng

* Dataset: Mollel/swahili-n_li-triplet-swh-eng
* Size: 1,115,700 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                           |
  | details | <ul><li>min: 7 tokens</li><li>mean: 15.18 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.53 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.8 tokens</li><li>max: 53 tokens</li></ul> |
* Samples:
  | anchor                                                                | positive                                       | negative                                                   |
  |:----------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------------------|
  | <code>A person on a horse jumps over a broken down airplane.</code>   | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
  | <code>Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika.</code> | <code>Mtu yuko nje, juu ya farasi.</code>      | <code>Mtu yuko kwenye mkahawa, akiagiza omelette.</code>   |
  | <code>Children smiling and waving at camera</code>                    | <code>There are children present</code>        | <code>The kids are frowning</code>                         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### Mollel/swahili-n_li-triplet-swh-eng

* Dataset: Mollel/swahili-n_li-triplet-swh-eng
* Size: 13,168 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                           |
  | details | <ul><li>min: 6 tokens</li><li>mean: 26.43 tokens</li><li>max: 94 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.37 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.7 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                         | positive                                                    | negative                                                           |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:-------------------------------------------------------------------|
  | <code>Two women are embracing while holding to go packages.</code>                                                                                                             | <code>Two woman are holding packages.</code>                | <code>The men are fighting outside a deli.</code>                  |
  | <code>Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda.</code>                                                                                            | <code>Wanawake wawili wanashikilia vifurushi.</code>        | <code>Wanaume hao wanapigana nje ya duka la vyakula vitamu.</code> |
  | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code>                   |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-64_spearman_cosine |
|:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:---------------------------:|
| 0.0115 | 100  | 9.6847        | -                            | -                            | -                           |
| 0.0229 | 200  | 8.5336        | -                            | -                            | -                           |
| 0.0344 | 300  | 7.768         | -                            | -                            | -                           |
| 0.0459 | 400  | 7.2049        | -                            | -                            | -                           |
| 0.0574 | 500  | 6.9425        | -                            | -                            | -                           |
| 0.0688 | 600  | 7.029         | -                            | -                            | -                           |
| 0.0803 | 700  | 6.259         | -                            | -                            | -                           |
| 0.0918 | 800  | 6.0939        | -                            | -                            | -                           |
| 0.1032 | 900  | 5.991         | -                            | -                            | -                           |
| 0.1147 | 1000 | 5.39          | -                            | -                            | -                           |
| 0.1262 | 1100 | 5.3214        | -                            | -                            | -                           |
| 0.1377 | 1200 | 5.1469        | -                            | -                            | -                           |
| 0.1491 | 1300 | 4.901         | -                            | -                            | -                           |
| 0.1606 | 1400 | 5.2725        | -                            | -                            | -                           |
| 0.1721 | 1500 | 5.077         | -                            | -                            | -                           |
| 0.1835 | 1600 | 4.8006        | -                            | -                            | -                           |
| 0.1950 | 1700 | 4.5318        | -                            | -                            | -                           |
| 0.2065 | 1800 | 4.48          | -                            | -                            | -                           |
| 0.2180 | 1900 | 4.5752        | -                            | -                            | -                           |
| 0.2294 | 2000 | 4.427         | -                            | -                            | -                           |
| 0.2409 | 2100 | 4.4021        | -                            | -                            | -                           |
| 0.2524 | 2200 | 4.5903        | -                            | -                            | -                           |
| 0.2639 | 2300 | 4.4561        | -                            | -                            | -                           |
| 0.2753 | 2400 | 4.372         | -                            | -                            | -                           |
| 0.2868 | 2500 | 4.2698        | -                            | -                            | -                           |
| 0.2983 | 2600 | 4.3954        | -                            | -                            | -                           |
| 0.3097 | 2700 | 4.2697        | -                            | -                            | -                           |
| 0.3212 | 2800 | 4.125         | -                            | -                            | -                           |
| 0.3327 | 2900 | 4.3611        | -                            | -                            | -                           |
| 0.3442 | 3000 | 4.2527        | -                            | -                            | -                           |
| 0.3556 | 3100 | 4.1892        | -                            | -                            | -                           |
| 0.3671 | 3200 | 4.0417        | -                            | -                            | -                           |
| 0.3786 | 3300 | 3.9434        | -                            | -                            | -                           |
| 0.3900 | 3400 | 3.9797        | -                            | -                            | -                           |
| 0.4015 | 3500 | 3.9611        | -                            | -                            | -                           |
| 0.4130 | 3600 | 4.04          | -                            | -                            | -                           |
| 0.4245 | 3700 | 3.965         | -                            | -                            | -                           |
| 0.4359 | 3800 | 3.778         | -                            | -                            | -                           |
| 0.4474 | 3900 | 4.0624        | -                            | -                            | -                           |
| 0.4589 | 4000 | 3.8972        | -                            | -                            | -                           |
| 0.4703 | 4100 | 3.7882        | -                            | -                            | -                           |
| 0.4818 | 4200 | 3.8048        | -                            | -                            | -                           |
| 0.4933 | 4300 | 3.9253        | -                            | -                            | -                           |
| 0.5048 | 4400 | 3.9832        | -                            | -                            | -                           |
| 0.5162 | 4500 | 3.6644        | -                            | -                            | -                           |
| 0.5277 | 4600 | 3.7353        | -                            | -                            | -                           |
| 0.5392 | 4700 | 3.7768        | -                            | -                            | -                           |
| 0.5506 | 4800 | 3.796         | -                            | -                            | -                           |
| 0.5621 | 4900 | 3.875         | -                            | -                            | -                           |
| 0.5736 | 5000 | 3.7856        | -                            | -                            | -                           |
| 0.5851 | 5100 | 3.8898        | -                            | -                            | -                           |
| 0.5965 | 5200 | 3.6327        | -                            | -                            | -                           |
| 0.6080 | 5300 | 3.7727        | -                            | -                            | -                           |
| 0.6195 | 5400 | 3.8582        | -                            | -                            | -                           |
| 0.6310 | 5500 | 3.729         | -                            | -                            | -                           |
| 0.6424 | 5600 | 3.7088        | -                            | -                            | -                           |
| 0.6539 | 5700 | 3.8414        | -                            | -                            | -                           |
| 0.6654 | 5800 | 3.7624        | -                            | -                            | -                           |
| 0.6768 | 5900 | 3.8816        | -                            | -                            | -                           |
| 0.6883 | 6000 | 3.7483        | -                            | -                            | -                           |
| 0.6998 | 6100 | 3.7759        | -                            | -                            | -                           |
| 0.7113 | 6200 | 3.6674        | -                            | -                            | -                           |
| 0.7227 | 6300 | 3.6441        | -                            | -                            | -                           |
| 0.7342 | 6400 | 3.7779        | -                            | -                            | -                           |
| 0.7457 | 6500 | 3.6691        | -                            | -                            | -                           |
| 0.7571 | 6600 | 3.7636        | -                            | -                            | -                           |
| 0.7686 | 6700 | 3.7424        | -                            | -                            | -                           |
| 0.7801 | 6800 | 3.4943        | -                            | -                            | -                           |
| 0.7916 | 6900 | 3.5399        | -                            | -                            | -                           |
| 0.8030 | 7000 | 3.3658        | -                            | -                            | -                           |
| 0.8145 | 7100 | 3.2856        | -                            | -                            | -                           |
| 0.8260 | 7200 | 3.3702        | -                            | -                            | -                           |
| 0.8374 | 7300 | 3.3121        | -                            | -                            | -                           |
| 0.8489 | 7400 | 3.2322        | -                            | -                            | -                           |
| 0.8604 | 7500 | 3.1577        | -                            | -                            | -                           |
| 0.8719 | 7600 | 3.1873        | -                            | -                            | -                           |
| 0.8833 | 7700 | 3.1492        | -                            | -                            | -                           |
| 0.8948 | 7800 | 3.2035        | -                            | -                            | -                           |
| 0.9063 | 7900 | 3.1607        | -                            | -                            | -                           |
| 0.9177 | 8000 | 3.1557        | -                            | -                            | -                           |
| 0.9292 | 8100 | 3.0915        | -                            | -                            | -                           |
| 0.9407 | 8200 | 3.1335        | -                            | -                            | -                           |
| 0.9522 | 8300 | 3.14          | -                            | -                            | -                           |
| 0.9636 | 8400 | 3.1422        | -                            | -                            | -                           |
| 0.9751 | 8500 | 3.1923        | -                            | -                            | -                           |
| 0.9866 | 8600 | 3.1085        | -                            | -                            | -                           |
| 0.9980 | 8700 | 3.089         | -                            | -                            | -                           |
| 1.0    | 8717 | -             | 0.6731                       | 0.6771                       | 0.6524                      |


### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->