File size: 2,396 Bytes
61d148b 2fcb9f2 dd3e02d 2fcb9f2 dd3e02d 2fcb9f2 dd3e02d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: Jiayi-Pan/Tiny-Vicuna-1B
tags:
- generated_from_trainer
model-index:
- name: vicuna_1b_stage1
results: []
datasets:
- Aeala/ShareGPT_Vicuna_unfiltered
language:
- en
metrics:
- accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/momorami-kaist/medusa_test/runs/ku8hga4l)
# vicuna_1b_stage1
This model is a fine-tuned version of [Jiayi-Pan/Tiny-Vicuna-1B](https://huggingface.co/Jiayi-Pan/Tiny-Vicuna-1B) on the Aeala/ShareGPT_Vicuna_unfiltered dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9673
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.3461 | 0.0170 | 40 | 3.5421 |
| 3.2004 | 0.0340 | 80 | 3.1581 |
| 3.0095 | 0.0510 | 120 | 3.0506 |
| 2.714 | 0.0681 | 160 | 3.0168 |
| 2.9508 | 0.0851 | 200 | 2.9764 |
| 2.9774 | 0.1021 | 240 | 2.9598 |
| 2.8688 | 0.1191 | 280 | 2.9551 |
| 2.8195 | 0.1361 | 320 | 2.9420 |
| 2.8471 | 0.1531 | 360 | 2.9328 |
| 2.9252 | 0.1701 | 400 | 2.9673 |
### Framework versions
- Transformers 4.43.0
- Pytorch 2.3.1
- Datasets 2.15.0
- Tokenizers 0.19.1 |