|
import gradio as gr |
|
from PIL import Image |
|
import numpy as np |
|
from aura_sr import AuraSR |
|
import torch |
|
import os |
|
import time |
|
from pathlib import Path |
|
import argparse |
|
|
|
|
|
torch.set_default_tensor_type(torch.FloatTensor) |
|
|
|
|
|
original_load = torch.load |
|
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu')) |
|
|
|
|
|
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2") |
|
|
|
|
|
torch.load = original_load |
|
|
|
def process_single_image(input_image_path): |
|
if input_image_path is None: |
|
raise gr.Error("Please provide an image to upscale.") |
|
|
|
|
|
pil_image = Image.open(input_image_path) |
|
|
|
|
|
start_time = time.time() |
|
upscaled_image = aura_sr.upscale_4x(pil_image) |
|
processing_time = time.time() - start_time |
|
|
|
print(f"Processing time: {processing_time:.2f} seconds") |
|
|
|
|
|
output_folder = "outputs" |
|
os.makedirs(output_folder, exist_ok=True) |
|
|
|
input_filename = os.path.basename(input_image_path) |
|
output_filename = os.path.splitext(input_filename)[0] |
|
output_path = os.path.join(output_folder, output_filename + ".png") |
|
|
|
counter = 1 |
|
while os.path.exists(output_path): |
|
output_path = os.path.join(output_folder, f"{output_filename}_{counter:04d}.png") |
|
counter += 1 |
|
|
|
upscaled_image.save(output_path) |
|
|
|
return [input_image_path, output_path] |
|
|
|
def process_batch(input_folder, output_folder=None): |
|
if not input_folder: |
|
raise gr.Error("Please provide an input folder path.") |
|
|
|
if not output_folder: |
|
output_folder = "outputs" |
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
|
|
input_files = [f for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff'))] |
|
total_files = len(input_files) |
|
processed_files = 0 |
|
results = [] |
|
|
|
for filename in input_files: |
|
input_path = os.path.join(input_folder, filename) |
|
pil_image = Image.open(input_path) |
|
|
|
start_time = time.time() |
|
upscaled_image = aura_sr.upscale_4x(pil_image) |
|
processing_time = time.time() - start_time |
|
|
|
output_filename = os.path.splitext(filename)[0] + ".png" |
|
output_path = os.path.join(output_folder, output_filename) |
|
|
|
counter = 1 |
|
while os.path.exists(output_path): |
|
output_path = os.path.join(output_folder, f"{os.path.splitext(filename)[0]}_{counter:04d}.png") |
|
counter += 1 |
|
|
|
upscaled_image.save(output_path) |
|
|
|
processed_files += 1 |
|
print(f"Processed {processed_files}/{total_files}: {filename} in {processing_time:.2f} seconds") |
|
|
|
results.append(output_path) |
|
|
|
print(f"Batch processing complete. {processed_files} images processed.") |
|
return results |
|
|
|
title = """<h1 align="center">AuraSR Giga Upscaler V1 by SECourses - Upscales to 4x</h1> |
|
<p><center>AuraSR: new open source super-resolution upscaler based on GigaGAN. Works perfect on some images and fails on some images so give it a try</center></p> |
|
<p><center>Works very fast and very VRAM friendly</center></p> |
|
<h2 align="center">Latest version on : <a href="https://www.patreon.com/posts/110060645">https://www.patreon.com/posts/110060645</a></h1> |
|
""" |
|
|
|
def create_demo(): |
|
with gr.Blocks() as demo: |
|
gr.HTML(title) |
|
|
|
with gr.Tab("Single Image"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
input_image = gr.Image(label="Input Image", type="filepath") |
|
process_btn = gr.Button(value="Upscale Image", variant="primary") |
|
with gr.Column(scale=1): |
|
output_gallery = gr.Gallery(label="Before / After", columns=2) |
|
|
|
process_btn.click( |
|
fn=process_single_image, |
|
inputs=[input_image], |
|
outputs=output_gallery |
|
) |
|
|
|
with gr.Tab("Batch Processing"): |
|
with gr.Row(): |
|
input_folder = gr.Textbox(label="Input Folder Path") |
|
output_folder = gr.Textbox(label="Output Folder Path (Optional)") |
|
batch_process_btn = gr.Button(value="Process Batch", variant="primary") |
|
output_gallery = gr.Gallery(label="Processed Images") |
|
|
|
batch_process_btn.click( |
|
fn=process_batch, |
|
inputs=[input_folder, output_folder], |
|
outputs=output_gallery |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="AuraSR Image Upscaling") |
|
parser.add_argument("--share", action="store_true", help="Create a publicly shareable link") |
|
args = parser.parse_args() |
|
|
|
demo = create_demo() |
|
demo.launch(debug=True, inbrowser=True, share=args.share) |