File size: 14,258 Bytes
17eddbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import cv2
import math
import numpy as np
from skimage import transform as trans
import torch
import torchvision
torchvision.disable_beta_transforms_warning()
from torchvision.transforms import v2
from numpy.linalg import norm as l2norm
arcface_src = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]],
dtype=np.float32)
arcface_src = np.expand_dims(arcface_src, axis=0)
def pad_image_by_size(img, image_size):
w, h = math.ceil(img.size(dim=2)), math.ceil(img.size(dim=1))
if w < image_size or h < image_size:
# add right, bottom pading to the image if its size is less than image_size value
add = image_size - min(w, h)
img = torch.nn.functional.pad(img, (0, add, 0, add), 'constant', 0)
return img
def transform(img, center, output_size, scale, rotation):
# pad image by image size
img = pad_image_by_size(img, output_size)
scale_ratio = scale
rot = float(rotation) * np.pi / 180.0
t1 = trans.SimilarityTransform(scale=scale_ratio)
cx = center[0] * scale_ratio
cy = center[1] * scale_ratio
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
t3 = trans.SimilarityTransform(rotation=rot)
t4 = trans.SimilarityTransform(translation=(output_size / 2,
output_size / 2))
t = t1 + t2 + t3 + t4
M = t.params[0:2]
cropped = v2.functional.affine(img, t.rotation, (t.translation[0], t.translation[1]) , t.scale, 0, interpolation=v2.InterpolationMode.BILINEAR, center = (0,0) )
cropped = v2.functional.crop(cropped, 0,0, output_size, output_size)
return cropped, M
def trans_points2d(pts, M):
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M, new_pt)
#print('new_pt', new_pt.shape, new_pt)
new_pts[i] = new_pt[0:2]
return new_pts
def trans_points3d(pts, M):
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M, new_pt)
#print('new_pt', new_pt.shape, new_pt)
new_pts[i][0:2] = new_pt[0:2]
new_pts[i][2] = pts[i][2] * scale
return new_pts
def trans_points(pts, M):
if pts.shape[1] == 2:
return trans_points2d(pts, M)
else:
return trans_points3d(pts, M)
def estimate_affine_matrix_3d23d(X, Y):
''' Using least-squares solution
Args:
X: [n, 3]. 3d points(fixed)
Y: [n, 3]. corresponding 3d points(moving). Y = PX
Returns:
P_Affine: (3, 4). Affine camera matrix (the third row is [0, 0, 0, 1]).
'''
X_homo = np.hstack((X, np.ones([X.shape[0],1]))) #n x 4
P = np.linalg.lstsq(X_homo, Y,rcond=None)[0].T # Affine matrix. 3 x 4
return P
def P2sRt(P):
''' decompositing camera matrix P
Args:
P: (3, 4). Affine Camera Matrix.
Returns:
s: scale factor.
R: (3, 3). rotation matrix.
t: (3,). translation.
'''
t = P[:, 3]
R1 = P[0:1, :3]
R2 = P[1:2, :3]
s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2.0
r1 = R1/np.linalg.norm(R1)
r2 = R2/np.linalg.norm(R2)
r3 = np.cross(r1, r2)
R = np.concatenate((r1, r2, r3), 0)
return s, R, t
def matrix2angle(R):
''' get three Euler angles from Rotation Matrix
Args:
R: (3,3). rotation matrix
Returns:
x: pitch
y: yaw
z: roll
'''
sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0])
singular = sy < 1e-6
if not singular :
x = math.atan2(R[2,1] , R[2,2])
y = math.atan2(-R[2,0], sy)
z = math.atan2(R[1,0], R[0,0])
else :
x = math.atan2(-R[1,2], R[1,1])
y = math.atan2(-R[2,0], sy)
z = 0
# rx, ry, rz = np.rad2deg(x), np.rad2deg(y), np.rad2deg(z)
rx, ry, rz = x*180/np.pi, y*180/np.pi, z*180/np.pi
return rx, ry, rz
def warp_face_by_bounding_box(img, bboxes, image_size=112):
# pad image by image size
img = pad_image_by_size(img, image_size)
# Set source points from bounding boxes
source_points = np.array([ [ bboxes[0], bboxes[1] ], [ bboxes[2], bboxes[1] ], [ bboxes[0], bboxes[3] ], [ bboxes[2], bboxes[3] ] ]).astype(np.float32)
# Set target points from image size
target_points = np.array([ [ 0, 0 ], [ image_size, 0 ], [ 0, image_size ], [ image_size, image_size ] ]).astype(np.float32)
# Find transform
tform = trans.SimilarityTransform()
tform.estimate(source_points, target_points)
# Transform
img = v2.functional.affine(img, tform.rotation, (tform.translation[0], tform.translation[1]) , tform.scale, 0, interpolation=v2.InterpolationMode.BILINEAR, center = (0,0) )
img = v2.functional.crop(img, 0,0, image_size, image_size)
M = tform.params[0:2]
return img, M
def warp_face_by_face_landmark_5(img, kpss, image_size=112, normalized = False, interpolation=v2.InterpolationMode.BILINEAR, custom_arcface_src = None):
# pad image by image size
img = pad_image_by_size(img, image_size)
M, pose_index = estimate_norm(kpss, image_size, normalized, custom_arcface_src)
#warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
t = trans.SimilarityTransform()
t.params[0:2] = M
img = v2.functional.affine(img, t.rotation*57.2958, (t.translation[0], t.translation[1]) , t.scale, 0, interpolation=interpolation, center = (0, 0) )
img = v2.functional.crop(img, 0,0, image_size, image_size)
return img, M
# lmk is prediction; src is template
def estimate_norm(lmk, image_size=112, normalized = False, custom_arcface_src = None):
assert lmk.shape == (5, 2)
tform = trans.SimilarityTransform()
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
min_M = []
min_index = []
min_error = float('inf')
if custom_arcface_src is None:
if normalized == False:
if image_size == 112:
src = arcface_src
else:
src = float(image_size) / 112.0 * arcface_src
else:
factor = float(image_size) / 128.0
src = arcface_src * factor
src[:, 0] += (factor * 8.0)
else:
src = custom_arcface_src
for i in np.arange(src.shape[0]):
tform.estimate(lmk, src[i])
M = tform.params[0:2, :]
results = np.dot(M, lmk_tran.T)
results = results.T
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
# print(error)
if error < min_error:
min_error = error
min_M = M
min_index = i
return min_M, min_index
def invertAffineTransform(M):
t = trans.SimilarityTransform()
t.params[0:2] = M
IM = t.inverse.params[0:2, :]
return IM
def warp_face_by_bounding_box_for_landmark_68(img, bbox, input_size):
"""
:param img: raw image
:param bbox: the bbox for the face
:param input_size: tuple input image size
:return:
"""
# pad image by image size
img = pad_image_by_size(img, input_size[0])
scale = 195 / np.subtract(bbox[2:], bbox[:2]).max()
translation = (256 - np.add(bbox[2:], bbox[:2]) * scale) * 0.5
rotation = 0
t1 = trans.SimilarityTransform(scale=scale)
t2 = trans.SimilarityTransform(rotation=rotation)
t3 = trans.SimilarityTransform(translation=translation)
t = t1 + t2 + t3
affine_matrix = np.array([ [ scale, 0, translation[0] ], [ 0, scale, translation[1] ] ])
crop_image = v2.functional.affine(img, t.rotation, (t.translation[0], t.translation[1]) , t.scale, 0, interpolation=v2.InterpolationMode.BILINEAR, center = (0,0) )
crop_image = v2.functional.crop(crop_image, 0,0, input_size[1], input_size[0])
if torch.mean(crop_image.to(dtype=torch.float32)[0, :, :]) < 30:
crop_image = cv2.cvtColor(crop_image.permute(1, 2, 0).to('cpu').numpy(), cv2.COLOR_RGB2Lab)
crop_image[:, :, 0] = cv2.createCLAHE(clipLimit = 2).apply(crop_image[:, :, 0])
crop_image = torch.from_numpy(cv2.cvtColor(crop_image, cv2.COLOR_Lab2RGB)).to('cuda').permute(2, 0, 1)
return crop_image, affine_matrix
def warp_face_by_bounding_box_for_landmark_98(img, bbox_org, input_size):
"""
:param img: raw image
:param bbox: the bbox for the face
:param input_size: tuple input image size
:return:
"""
# pad image by image size
img = pad_image_by_size(img, input_size[0])
##preprocess
bbox = bbox_org.copy()
min_face = 20
base_extend_range = [0.2, 0.3]
bbox_width = bbox[2] - bbox[0]
bbox_height = bbox[3] - bbox[1]
if bbox_width <= min_face or bbox_height <= min_face:
return None, None
add = int(max(bbox_width, bbox_height))
bimg = torch.nn.functional.pad(img, (add, add, add, add), 'constant', 0)
bbox += add
face_width = (1 + 2 * base_extend_range[0]) * bbox_width
center = [(bbox[0] + bbox[2]) // 2, (bbox[1] + bbox[3]) // 2]
### make the box as square
bbox[0] = center[0] - face_width // 2
bbox[1] = center[1] - face_width // 2
bbox[2] = center[0] + face_width // 2
bbox[3] = center[1] + face_width // 2
# crop
bbox = bbox.astype(np.int32)
crop_image = bimg[:, bbox[1]:bbox[3], bbox[0]:bbox[2]]
h, w = (crop_image.size(dim=1), crop_image.size(dim=2))
t_resize = v2.Resize((input_size[1], input_size[0]), antialias=False)
crop_image = t_resize(crop_image)
return crop_image, [h, w, bbox[1], bbox[0], add]
def create_bounding_box_from_face_landmark_106_98_68(face_landmark_106_98_68):
min_x, min_y = np.min(face_landmark_106_98_68, axis = 0)
max_x, max_y = np.max(face_landmark_106_98_68, axis = 0)
bounding_box = np.array([ min_x, min_y, max_x, max_y ]).astype(np.int16)
return bounding_box
def convert_face_landmark_68_to_5(face_landmark_68, face_landmark_68_score):
face_landmark_5 = np.array(
[
np.mean(face_landmark_68[36:42], axis = 0),
np.mean(face_landmark_68[42:48], axis = 0),
face_landmark_68[30],
face_landmark_68[48],
face_landmark_68[54]
])
if np.any(face_landmark_68_score):
face_landmark_5_score = np.array(
[
np.mean(face_landmark_68_score[36:42], axis = 0),
np.mean(face_landmark_68_score[42:48], axis = 0),
face_landmark_68_score[30],
face_landmark_68_score[48],
face_landmark_68_score[54]
])
else:
face_landmark_5_score = np.array([])
return face_landmark_5, face_landmark_5_score
def convert_face_landmark_98_to_5(face_landmark_98, face_landmark_98_score):
face_landmark_5 = np.array(
[
face_landmark_98[96], # eye left
face_landmark_98[97], # eye-right
face_landmark_98[54], # nose,
face_landmark_98[76], # lip left
face_landmark_98[82] # lip right
])
face_landmark_5_score = np.array(
[
face_landmark_98_score[96], # eye left
face_landmark_98_score[97], # eye-right
face_landmark_98_score[54], # nose,
face_landmark_98_score[76], # lip left
face_landmark_98_score[82] # lip right
])
return face_landmark_5, face_landmark_5_score
def convert_face_landmark_106_to_5(face_landmark_106):
face_landmark_5 = np.array(
[
face_landmark_106[38], # eye left
face_landmark_106[88], # eye-right
face_landmark_106[86], # nose,
face_landmark_106[52], # lip left
face_landmark_106[61] # lip right
])
return face_landmark_5
def convert_face_landmark_478_to_5(face_landmark_478):
face_landmark_5 = np.array(
[
face_landmark_478[468], # eye left
#np.array([(face_landmark_478[159][0] + face_landmark_478[145][0]) / 2, (face_landmark_478[159][1] + face_landmark_478[145][1]) / 2]), # eye left (145-159)
face_landmark_478[473], # eye-right
#np.array([(face_landmark_478[386][0] + face_landmark_478[374][0]) / 2, (face_landmark_478[386][1] + face_landmark_478[374][1]) / 2]), # eye-right (374-386)
face_landmark_478[4], # nose, 4, 1
face_landmark_478[61], # lip left ? 61, 57
face_landmark_478[291] # lip right ? 291, 287
])
return face_landmark_5
def test_bbox_landmarks(img, bbox, kpss):
image = img.permute(1,2,0).to('cpu').numpy().copy()
if len(bbox) > 0:
box = bbox.astype(int)
color = (255, 0, 0)
cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), color, 2)
if len(kpss) > 0:
for i in range(kpss.shape[0]):
kps = kpss[i].astype(int)
color = (0, 0, 255)
cv2.circle(image, (kps[0], kps[1]), 1, color,
2)
cv2.imshow('image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def test_multi_bbox_landmarks(img, bboxes, kpss):
if len(bboxes) > 0 and len(kpss) > 0:
for i in range(np.array(kpss).shape[0]):
test_bbox_landmarks(img, bboxes[i], kpss[i])
def detect_img_color(img):
frame = img.permute(1,2,0)
b = frame[:, :, :1]
g = frame[:, :, 1:2]
r = frame[:, :, 2:]
# computing the mean
b_mean = torch.mean(b.to(float))
g_mean = torch.mean(g.to(float))
r_mean = torch.mean(r.to(float))
# displaying the most prominent color
if (b_mean > g_mean and b_mean > r_mean):
return 'BGR'
elif (g_mean > r_mean and g_mean > b_mean):
return 'GBR'
return 'RGB' |