|
import cv2
|
|
import numpy as np
|
|
from skimage import transform as trans
|
|
import torch
|
|
import torchvision
|
|
torchvision.disable_beta_transforms_warning()
|
|
from torchvision.transforms import v2
|
|
from numpy.linalg import norm as l2norm
|
|
import onnxruntime
|
|
import onnx
|
|
from itertools import product as product
|
|
import subprocess as sp
|
|
onnxruntime.set_default_logger_severity(4)
|
|
onnxruntime.log_verbosity_level = -1
|
|
import rope.FaceUtil as faceutil
|
|
import pickle
|
|
|
|
class Models():
|
|
def __init__(self):
|
|
self.arcface_dst = np.array( [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.7299, 92.2041]], dtype=np.float32)
|
|
self.providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
|
|
|
self.retinaface_model = []
|
|
self.yoloface_model = []
|
|
self.scrdf_model = []
|
|
self.yunet_model = []
|
|
self.face_landmark_68_model = []
|
|
self.face_landmark_3d68_model = []
|
|
self.mean_lmk = []
|
|
self.face_landmark_98_model = []
|
|
self.face_landmark_106_model = []
|
|
self.face_landmark_478_model = []
|
|
self.face_blendshapes_model = []
|
|
self.resnet50_model, self.anchors = [], []
|
|
|
|
self.insight106_model = []
|
|
|
|
self.recognition_model = []
|
|
self.swapper_model = []
|
|
self.swapper_model_kps = []
|
|
self.swapper_model_swap = []
|
|
|
|
self.emap = []
|
|
self.GFPGAN_model = []
|
|
self.GPEN_256_model = []
|
|
self.GPEN_512_model = []
|
|
self.GPEN_1024_model = []
|
|
self.codeformer_model = []
|
|
|
|
self.occluder_model = []
|
|
self.faceparser_model = []
|
|
|
|
self.syncvec = torch.empty((1,1), dtype=torch.float32, device='cuda:0')
|
|
|
|
self.normalize = v2.Normalize(mean = [ 0., 0., 0. ],
|
|
std = [ 1/1.0, 1/1.0, 1/1.0 ])
|
|
|
|
self.LandmarksSubsetIdxs = [
|
|
0, 1, 4, 5, 6, 7, 8, 10, 13, 14, 17, 21, 33, 37, 39,
|
|
40, 46, 52, 53, 54, 55, 58, 61, 63, 65, 66, 67, 70, 78, 80,
|
|
81, 82, 84, 87, 88, 91, 93, 95, 103, 105, 107, 109, 127, 132, 133,
|
|
136, 144, 145, 146, 148, 149, 150, 152, 153, 154, 155, 157, 158, 159, 160,
|
|
161, 162, 163, 168, 172, 173, 176, 178, 181, 185, 191, 195, 197, 234, 246,
|
|
249, 251, 263, 267, 269, 270, 276, 282, 283, 284, 285, 288, 291, 293, 295,
|
|
296, 297, 300, 308, 310, 311, 312, 314, 317, 318, 321, 323, 324, 332, 334,
|
|
336, 338, 356, 361, 362, 365, 373, 374, 375, 377, 378, 379, 380, 381, 382,
|
|
384, 385, 386, 387, 388, 389, 390, 397, 398, 400, 402, 405, 409, 415, 454,
|
|
466, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477
|
|
]
|
|
|
|
def get_gpu_memory(self):
|
|
command = "nvidia-smi --query-gpu=memory.total --format=csv"
|
|
memory_total_info = sp.check_output(command.split()).decode('ascii').split('\n')[:-1][1:]
|
|
memory_total = [int(x.split()[0]) for i, x in enumerate(memory_total_info)]
|
|
|
|
command = "nvidia-smi --query-gpu=memory.free --format=csv"
|
|
memory_free_info = sp.check_output(command.split()).decode('ascii').split('\n')[:-1][1:]
|
|
memory_free = [int(x.split()[0]) for i, x in enumerate(memory_free_info)]
|
|
|
|
memory_used = memory_total[0] - memory_free[0]
|
|
|
|
return memory_used, memory_total[0]
|
|
|
|
def run_detect(self, img, detect_mode='Retinaface', max_num=1, score=0.5, use_landmark_detection=False, landmark_detect_mode='98', landmark_score=0.5, from_points=False):
|
|
bboxes = []
|
|
kpss = []
|
|
|
|
if detect_mode=='Retinaface':
|
|
if not self.retinaface_model:
|
|
self.retinaface_model = onnxruntime.InferenceSession('./models/det_10g.onnx', providers=self.providers)
|
|
|
|
bboxes, kpss = self.detect_retinaface(img, max_num=max_num, score=score, use_landmark_detection=use_landmark_detection, landmark_detect_mode=landmark_detect_mode, landmark_score=landmark_score, from_points=from_points)
|
|
|
|
elif detect_mode=='SCRDF':
|
|
if not self.scrdf_model:
|
|
self.scrdf_model = onnxruntime.InferenceSession('./models/scrfd_2.5g_bnkps.onnx', providers=self.providers)
|
|
|
|
bboxes, kpss = self.detect_scrdf(img, max_num=max_num, score=score, use_landmark_detection=use_landmark_detection, landmark_detect_mode=landmark_detect_mode, landmark_score=landmark_score, from_points=from_points)
|
|
|
|
elif detect_mode=='Yolov8':
|
|
if not self.yoloface_model:
|
|
self.yoloface_model = onnxruntime.InferenceSession('./models/yoloface_8n.onnx', providers=self.providers)
|
|
|
|
|
|
bboxes, kpss = self.detect_yoloface(img, max_num=max_num, score=score, use_landmark_detection=use_landmark_detection, landmark_detect_mode=landmark_detect_mode, landmark_score=landmark_score, from_points=from_points)
|
|
|
|
elif detect_mode=='Yunet':
|
|
if not self.yunet_model:
|
|
self.yunet_model = onnxruntime.InferenceSession('./models/yunet_n_640_640.onnx', providers=self.providers)
|
|
|
|
bboxes, kpss = self.detect_yunet(img, max_num=max_num, score=score, use_landmark_detection=use_landmark_detection, landmark_detect_mode=landmark_detect_mode, landmark_score=landmark_score, from_points=from_points)
|
|
|
|
return bboxes, kpss
|
|
|
|
def run_detect_landmark(self, img, bbox, det_kpss, detect_mode='98', score=0.5, from_points=False):
|
|
kpss = []
|
|
scores = []
|
|
|
|
if detect_mode=='5':
|
|
if not self.resnet50_model:
|
|
self.resnet50_model = onnxruntime.InferenceSession("./models/res50.onnx", providers=self.providers)
|
|
|
|
feature_maps = [[64, 64], [32, 32], [16, 16]]
|
|
min_sizes = [[16, 32], [64, 128], [256, 512]]
|
|
steps = [8, 16, 32]
|
|
image_size = 512
|
|
|
|
for k, f in enumerate(feature_maps):
|
|
min_size_array = min_sizes[k]
|
|
for i, j in product(range(f[0]), range(f[1])):
|
|
for min_size in min_size_array:
|
|
s_kx = min_size / image_size
|
|
s_ky = min_size / image_size
|
|
dense_cx = [x * steps[k] / image_size for x in [j + 0.5]]
|
|
dense_cy = [y * steps[k] / image_size for y in [i + 0.5]]
|
|
for cy, cx in product(dense_cy, dense_cx):
|
|
self.anchors += [cx, cy, s_kx, s_ky]
|
|
|
|
kpss, scores = self.detect_face_landmark_5(img, bbox=bbox, det_kpss=det_kpss, from_points=from_points)
|
|
|
|
elif detect_mode=='68':
|
|
if not self.face_landmark_68_model:
|
|
self.face_landmark_68_model = onnxruntime.InferenceSession('./models/2dfan4.onnx', providers=self.providers)
|
|
|
|
kpss, scores = self.detect_face_landmark_68(img, bbox=bbox, det_kpss=det_kpss, convert68_5=True, from_points=from_points)
|
|
|
|
elif detect_mode=='3d68':
|
|
if not self.face_landmark_3d68_model:
|
|
self.face_landmark_3d68_model = onnxruntime.InferenceSession('./models/1k3d68.onnx', providers=self.providers)
|
|
with open('./models/meanshape_68.pkl', 'rb') as f:
|
|
self.mean_lmk = pickle.load(f)
|
|
|
|
kpss, scores = self.detect_face_landmark_3d68(img, bbox=bbox, det_kpss=det_kpss, convert68_5=True, from_points=from_points)
|
|
|
|
return kpss, scores
|
|
|
|
elif detect_mode=='98':
|
|
if not self.face_landmark_98_model:
|
|
self.face_landmark_98_model = onnxruntime.InferenceSession('./models/peppapig_teacher_Nx3x256x256.onnx', providers=self.providers)
|
|
|
|
kpss, scores = self.detect_face_landmark_98(img, bbox=bbox, det_kpss=det_kpss, convert98_5=True, from_points=from_points)
|
|
|
|
elif detect_mode=='106':
|
|
if not self.face_landmark_106_model:
|
|
self.face_landmark_106_model = onnxruntime.InferenceSession('./models/2d106det.onnx', providers=self.providers)
|
|
|
|
kpss, scores = self.detect_face_landmark_106(img, bbox=bbox, det_kpss=det_kpss, convert106_5=True, from_points=from_points)
|
|
|
|
return kpss, scores
|
|
|
|
elif detect_mode=='478':
|
|
if not self.face_landmark_478_model:
|
|
self.face_landmark_478_model = onnxruntime.InferenceSession('./models/face_landmarks_detector_Nx3x256x256.onnx', providers=self.providers)
|
|
|
|
if not self.face_blendshapes_model:
|
|
self.face_blendshapes_model = onnxruntime.InferenceSession('./models/face_blendshapes_Nx146x2.onnx', providers=self.providers)
|
|
|
|
kpss, scores = self.detect_face_landmark_478(img, bbox=bbox, det_kpss=det_kpss, convert478_5=True, from_points=from_points)
|
|
|
|
return kpss, scores
|
|
|
|
if len(kpss) > 0:
|
|
if len(scores) > 0:
|
|
if np.mean(scores) >= score:
|
|
return kpss, scores
|
|
else:
|
|
return kpss, scores
|
|
|
|
return [], []
|
|
|
|
def delete_models(self):
|
|
self.retinaface_model = []
|
|
self.yoloface_model = []
|
|
self.scrdf_model = []
|
|
self.yunet_model = []
|
|
self.face_landmark_68_model = []
|
|
self.face_landmark_3d68_model = []
|
|
self.mean_lmk = []
|
|
self.face_landmark_98_model = []
|
|
self.face_landmark_106_model = []
|
|
self.face_landmark_478_model = []
|
|
self.face_blendshapes_model = []
|
|
self.resnet50_model = []
|
|
self.insight106_model = []
|
|
self.recognition_model = []
|
|
self.swapper_model = []
|
|
self.GFPGAN_model = []
|
|
self.GPEN_256_model = []
|
|
self.GPEN_512_model = []
|
|
self.GPEN_1024_model = []
|
|
self.codeformer_model = []
|
|
self.occluder_model = []
|
|
self.faceparser_model = []
|
|
|
|
def run_recognize(self, img, kps):
|
|
if not self.recognition_model:
|
|
self.recognition_model = onnxruntime.InferenceSession('./models/w600k_r50.onnx', providers=self.providers)
|
|
|
|
embedding, cropped_image = self.recognize(img, kps)
|
|
return embedding, cropped_image
|
|
|
|
def calc_swapper_latent(self, source_embedding):
|
|
if not self.swapper_model:
|
|
graph = onnx.load("./models/inswapper_128.fp16.onnx").graph
|
|
self.emap = onnx.numpy_helper.to_array(graph.initializer[-1])
|
|
|
|
n_e = source_embedding / l2norm(source_embedding)
|
|
latent = n_e.reshape((1,-1))
|
|
latent = np.dot(latent, self.emap)
|
|
latent /= np.linalg.norm(latent)
|
|
return latent
|
|
|
|
def run_swapper(self, image, embedding, output):
|
|
if not self.swapper_model:
|
|
cuda_options = {"arena_extend_strategy": "kSameAsRequested", 'cudnn_conv_algo_search': 'DEFAULT'}
|
|
sess_options = onnxruntime.SessionOptions()
|
|
sess_options.enable_cpu_mem_arena = False
|
|
|
|
|
|
|
|
self.swapper_model = onnxruntime.InferenceSession( "./models/inswapper_128.fp16.onnx", providers=self.providers)
|
|
|
|
io_binding = self.swapper_model.io_binding()
|
|
io_binding.bind_input(name='target', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,128,128), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_input(name='source', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,512), buffer_ptr=embedding.data_ptr())
|
|
io_binding.bind_output(name='output', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,128,128), buffer_ptr=output.data_ptr())
|
|
|
|
self.syncvec.cpu()
|
|
self.swapper_model.run_with_iobinding(io_binding)
|
|
|
|
def run_swap_stg1(self, embedding):
|
|
|
|
|
|
if not self.swapper_model_kps:
|
|
self.swapper_model_kps = onnxruntime.InferenceSession( "./models/inswapper_kps.onnx", providers=self.providers)
|
|
|
|
|
|
io_binding = self.swapper_model_kps.io_binding()
|
|
kps_1 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_2 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_3 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_4 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_5 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_6 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_7 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_8 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_9 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_10 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_11 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
kps_12 = torch.ones((1, 2048), dtype=torch.float16, device='cuda').contiguous()
|
|
|
|
|
|
io_binding.bind_input(name='source', device_type='cuda', device_id=0, element_type=np.float32, shape=(1, 512), buffer_ptr=embedding.data_ptr())
|
|
io_binding.bind_output(name='1', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_1.data_ptr())
|
|
io_binding.bind_output(name='2', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_2.data_ptr())
|
|
io_binding.bind_output(name='3', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_3.data_ptr())
|
|
io_binding.bind_output(name='4', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_4.data_ptr())
|
|
io_binding.bind_output(name='5', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_5.data_ptr())
|
|
io_binding.bind_output(name='6', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_6.data_ptr())
|
|
io_binding.bind_output(name='7', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_7.data_ptr())
|
|
io_binding.bind_output(name='8', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_8.data_ptr())
|
|
io_binding.bind_output(name='9', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_9.data_ptr())
|
|
io_binding.bind_output(name='10', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_10.data_ptr())
|
|
io_binding.bind_output(name='11', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_11.data_ptr())
|
|
io_binding.bind_output(name='12', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=kps_12.data_ptr())
|
|
|
|
self.syncvec.cpu()
|
|
self.swapper_model_kps.run_with_iobinding(io_binding)
|
|
|
|
|
|
holder = []
|
|
holder.append(kps_1)
|
|
holder.append(kps_2)
|
|
holder.append(kps_3)
|
|
holder.append(kps_4)
|
|
holder.append(kps_5)
|
|
holder.append(kps_6)
|
|
holder.append(kps_7)
|
|
holder.append(kps_8)
|
|
holder.append(kps_9)
|
|
holder.append(kps_10)
|
|
holder.append(kps_11)
|
|
holder.append(kps_12)
|
|
|
|
return holder
|
|
|
|
|
|
def run_swap_stg2(self, image, holder, output):
|
|
if not self.swapper_model_swap:
|
|
self.swapper_model_swap = onnxruntime.InferenceSession( "./models/inswapper_swap.onnx", providers=self.providers)
|
|
|
|
io_binding = self.swapper_model_swap.io_binding()
|
|
io_binding.bind_input(name='target', device_type='cuda', device_id=0, element_type=np.float32, shape=(1, 3, 128, 128), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_170', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[0].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_224', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[1].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_278', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[2].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_332', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[3].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_386', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[4].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_440', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[5].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_494', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[6].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_548', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[7].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_602', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[8].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_656', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[9].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_710', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[10].data_ptr())
|
|
io_binding.bind_input(name='onnx::Unsqueeze_764', device_type='cuda', device_id=0, element_type=np.float16, shape=(1, 2048), buffer_ptr=holder[11].data_ptr())
|
|
io_binding.bind_output(name='output', device_type='cuda', device_id=0, element_type=np.float32, shape=(1, 3, 128, 128), buffer_ptr=output.data_ptr())
|
|
|
|
self.syncvec.cpu()
|
|
self.swapper_model_swap.run_with_iobinding(io_binding)
|
|
def run_GFPGAN(self, image, output):
|
|
if not self.GFPGAN_model:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.GFPGAN_model = onnxruntime.InferenceSession( "./models/GFPGANv1.4.onnx", providers=self.providers)
|
|
|
|
io_binding = self.GFPGAN_model.io_binding()
|
|
io_binding.bind_input(name='input', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,512,512), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_output(name='output', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,512,512), buffer_ptr=output.data_ptr())
|
|
|
|
self.syncvec.cpu()
|
|
self.GFPGAN_model.run_with_iobinding(io_binding)
|
|
|
|
def run_GPEN_1024(self, image, output):
|
|
if not self.GPEN_1024_model:
|
|
self.GPEN_1024_model = onnxruntime.InferenceSession( "./models/GPEN-BFR-1024.onnx", providers=self.providers)
|
|
|
|
io_binding = self.GPEN_1024_model.io_binding()
|
|
io_binding.bind_input(name='input', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,1024,1024), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_output(name='output', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,1024,1024), buffer_ptr=output.data_ptr())
|
|
|
|
self.syncvec.cpu()
|
|
self.GPEN_1024_model.run_with_iobinding(io_binding)
|
|
|
|
def run_GPEN_512(self, image, output):
|
|
if not self.GPEN_512_model:
|
|
self.GPEN_512_model = onnxruntime.InferenceSession( "./models/GPEN-BFR-512.onnx", providers=self.providers)
|
|
|
|
io_binding = self.GPEN_512_model.io_binding()
|
|
io_binding.bind_input(name='input', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,512,512), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_output(name='output', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,512,512), buffer_ptr=output.data_ptr())
|
|
|
|
self.syncvec.cpu()
|
|
self.GPEN_512_model.run_with_iobinding(io_binding)
|
|
|
|
def run_GPEN_256(self, image, output):
|
|
if not self.GPEN_256_model:
|
|
self.GPEN_256_model = onnxruntime.InferenceSession( "./models/GPEN-BFR-256.onnx", providers=self.providers)
|
|
|
|
io_binding = self.GPEN_256_model.io_binding()
|
|
io_binding.bind_input(name='input', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,256,256), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_output(name='output', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,256,256), buffer_ptr=output.data_ptr())
|
|
|
|
self.syncvec.cpu()
|
|
self.GPEN_256_model.run_with_iobinding(io_binding)
|
|
|
|
def run_codeformer(self, image, output):
|
|
if not self.codeformer_model:
|
|
self.codeformer_model = onnxruntime.InferenceSession( "./models/codeformer_fp16.onnx", providers=self.providers)
|
|
|
|
io_binding = self.codeformer_model.io_binding()
|
|
io_binding.bind_input(name='x', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,512,512), buffer_ptr=image.data_ptr())
|
|
w = np.array([0.9], dtype=np.double)
|
|
io_binding.bind_cpu_input('w', w)
|
|
io_binding.bind_output(name='y', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,512,512), buffer_ptr=output.data_ptr())
|
|
|
|
self.syncvec.cpu()
|
|
self.codeformer_model.run_with_iobinding(io_binding)
|
|
|
|
def run_occluder(self, image, output):
|
|
if not self.occluder_model:
|
|
self.occluder_model = onnxruntime.InferenceSession("./models/occluder.onnx", providers=self.providers)
|
|
|
|
io_binding = self.occluder_model.io_binding()
|
|
io_binding.bind_input(name='img', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,256,256), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_output(name='output', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,1,256,256), buffer_ptr=output.data_ptr())
|
|
|
|
|
|
self.syncvec.cpu()
|
|
self.occluder_model.run_with_iobinding(io_binding)
|
|
|
|
def run_faceparser(self, image, output):
|
|
if not self.faceparser_model:
|
|
self.faceparser_model = onnxruntime.InferenceSession("./models/faceparser_fp16.onnx", providers=self.providers)
|
|
|
|
io_binding = self.faceparser_model.io_binding()
|
|
io_binding.bind_input(name='input', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,512,512), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_output(name='out', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,19,512,512), buffer_ptr=output.data_ptr())
|
|
|
|
|
|
self.syncvec.cpu()
|
|
self.faceparser_model.run_with_iobinding(io_binding)
|
|
|
|
def detect_retinaface(self, img, max_num, score, use_landmark_detection, landmark_detect_mode, landmark_score, from_points):
|
|
if use_landmark_detection:
|
|
img_landmark = img.clone()
|
|
|
|
|
|
input_size = (640, 640)
|
|
im_ratio = torch.div(img.size()[1], img.size()[2])
|
|
|
|
|
|
model_ratio = 1.0
|
|
if im_ratio>model_ratio:
|
|
new_height = input_size[1]
|
|
new_width = int(new_height / im_ratio)
|
|
else:
|
|
new_width = input_size[0]
|
|
new_height = int(new_width * im_ratio)
|
|
det_scale = torch.div(new_height, img.size()[1])
|
|
|
|
resize = v2.Resize((new_height, new_width), antialias=True)
|
|
img = resize(img)
|
|
img = img.permute(1,2,0)
|
|
|
|
det_img = torch.zeros((input_size[1], input_size[0], 3), dtype=torch.float32, device='cuda:0')
|
|
det_img[:new_height,:new_width, :] = img
|
|
|
|
|
|
det_img = det_img[:, :, [2,1,0]]
|
|
det_img = torch.sub(det_img, 127.5)
|
|
det_img = torch.div(det_img, 128.0)
|
|
det_img = det_img.permute(2, 0, 1)
|
|
|
|
|
|
det_img = torch.unsqueeze(det_img, 0).contiguous()
|
|
|
|
io_binding = self.retinaface_model.io_binding()
|
|
io_binding.bind_input(name='input.1', device_type='cuda', device_id=0, element_type=np.float32, shape=det_img.size(), buffer_ptr=det_img.data_ptr())
|
|
|
|
io_binding.bind_output('448', 'cuda')
|
|
io_binding.bind_output('471', 'cuda')
|
|
io_binding.bind_output('494', 'cuda')
|
|
io_binding.bind_output('451', 'cuda')
|
|
io_binding.bind_output('474', 'cuda')
|
|
io_binding.bind_output('497', 'cuda')
|
|
io_binding.bind_output('454', 'cuda')
|
|
io_binding.bind_output('477', 'cuda')
|
|
io_binding.bind_output('500', 'cuda')
|
|
|
|
|
|
self.syncvec.cpu()
|
|
self.retinaface_model.run_with_iobinding(io_binding)
|
|
|
|
net_outs = io_binding.copy_outputs_to_cpu()
|
|
|
|
input_height = det_img.shape[2]
|
|
input_width = det_img.shape[3]
|
|
|
|
fmc = 3
|
|
center_cache = {}
|
|
scores_list = []
|
|
bboxes_list = []
|
|
kpss_list = []
|
|
for idx, stride in enumerate([8, 16, 32]):
|
|
scores = net_outs[idx]
|
|
bbox_preds = net_outs[idx+fmc]
|
|
bbox_preds = bbox_preds * stride
|
|
|
|
kps_preds = net_outs[idx+fmc*2] * stride
|
|
height = input_height // stride
|
|
width = input_width // stride
|
|
K = height * width
|
|
key = (height, width, stride)
|
|
if key in center_cache:
|
|
anchor_centers = center_cache[key]
|
|
else:
|
|
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
|
|
anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
|
|
anchor_centers = np.stack([anchor_centers]*2, axis=1).reshape( (-1,2) )
|
|
if len(center_cache)<100:
|
|
center_cache[key] = anchor_centers
|
|
|
|
pos_inds = np.where(scores>=score)[0]
|
|
|
|
x1 = anchor_centers[:, 0] - bbox_preds[:, 0]
|
|
y1 = anchor_centers[:, 1] - bbox_preds[:, 1]
|
|
x2 = anchor_centers[:, 0] + bbox_preds[:, 2]
|
|
y2 = anchor_centers[:, 1] + bbox_preds[:, 3]
|
|
|
|
bboxes = np.stack([x1, y1, x2, y2], axis=-1)
|
|
|
|
pos_scores = scores[pos_inds]
|
|
pos_bboxes = bboxes[pos_inds]
|
|
scores_list.append(pos_scores)
|
|
bboxes_list.append(pos_bboxes)
|
|
|
|
preds = []
|
|
for i in range(0, kps_preds.shape[1], 2):
|
|
px = anchor_centers[:, i%2] + kps_preds[:, i]
|
|
py = anchor_centers[:, i%2+1] + kps_preds[:, i+1]
|
|
|
|
preds.append(px)
|
|
preds.append(py)
|
|
kpss = np.stack(preds, axis=-1)
|
|
|
|
kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
|
|
pos_kpss = kpss[pos_inds]
|
|
kpss_list.append(pos_kpss)
|
|
|
|
scores = np.vstack(scores_list)
|
|
scores_ravel = scores.ravel()
|
|
order = scores_ravel.argsort()[::-1]
|
|
|
|
det_scale = det_scale.numpy()
|
|
|
|
bboxes = np.vstack(bboxes_list) / det_scale
|
|
|
|
kpss = np.vstack(kpss_list) / det_scale
|
|
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
|
|
pre_det = pre_det[order, :]
|
|
|
|
dets = pre_det
|
|
thresh = 0.4
|
|
x1 = dets[:, 0]
|
|
y1 = dets[:, 1]
|
|
x2 = dets[:, 2]
|
|
y2 = dets[:, 3]
|
|
scoresb = dets[:, 4]
|
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
orderb = scoresb.argsort()[::-1]
|
|
|
|
keep = []
|
|
while orderb.size > 0:
|
|
i = orderb[0]
|
|
keep.append(i)
|
|
xx1 = np.maximum(x1[i], x1[orderb[1:]])
|
|
yy1 = np.maximum(y1[i], y1[orderb[1:]])
|
|
xx2 = np.minimum(x2[i], x2[orderb[1:]])
|
|
yy2 = np.minimum(y2[i], y2[orderb[1:]])
|
|
|
|
w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
|
|
inter = w * h
|
|
ovr = inter / (areas[i] + areas[orderb[1:]] - inter)
|
|
|
|
inds = np.where(ovr <= thresh)[0]
|
|
orderb = orderb[inds + 1]
|
|
|
|
det = pre_det[keep, :]
|
|
|
|
kpss = kpss[order,:,:]
|
|
kpss = kpss[keep,:,:]
|
|
|
|
if max_num > 0 and det.shape[0] > max_num:
|
|
area = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
|
|
det_img_center = det_img.shape[0] // 2, det_img.shape[1] // 2
|
|
offsets = np.vstack([
|
|
(det[:, 0] + det[:, 2]) / 2 - det_img_center[1],
|
|
(det[:, 1] + det[:, 3]) / 2 - det_img_center[0]
|
|
])
|
|
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
|
|
|
|
values = area - offset_dist_squared * 2.0
|
|
bindex = np.argsort(values)[::-1]
|
|
bindex = bindex[0:max_num]
|
|
|
|
det = det[bindex, :]
|
|
if kpss is not None:
|
|
kpss = kpss[bindex, :]
|
|
|
|
score_values = det[:, 4]
|
|
|
|
det = np.delete(det, 4, 1)
|
|
|
|
if use_landmark_detection and len(kpss) > 0:
|
|
for i in range(kpss.shape[0]):
|
|
landmark_kpss, landmark_scores = self.run_detect_landmark(img_landmark, det[i], kpss[i], landmark_detect_mode, landmark_score, from_points)
|
|
if len(landmark_kpss) > 0:
|
|
if len(landmark_scores) > 0:
|
|
|
|
|
|
if np.mean(landmark_scores) > np.mean(score_values[i]):
|
|
kpss[i] = landmark_kpss
|
|
else:
|
|
kpss[i] = landmark_kpss
|
|
|
|
return det, kpss
|
|
|
|
def detect_retinaface2(self, img, max_num, score):
|
|
|
|
|
|
input_size = (640, 640)
|
|
im_ratio = torch.div(img.size()[1], img.size()[2])
|
|
|
|
|
|
model_ratio = 1.0
|
|
if im_ratio > model_ratio:
|
|
new_height = input_size[1]
|
|
new_width = int(new_height / im_ratio)
|
|
else:
|
|
new_width = input_size[0]
|
|
new_height = int(new_width * im_ratio)
|
|
det_scale = torch.div(new_height, img.size()[1])
|
|
|
|
resize = v2.Resize((new_height, new_width), antialias=True)
|
|
img = resize(img)
|
|
img = img.permute(1, 2, 0)
|
|
|
|
det_img = torch.zeros((input_size[1], input_size[0], 3), dtype=torch.float32, device='cuda:0')
|
|
det_img[:new_height, :new_width, :] = img
|
|
|
|
|
|
det_img = det_img[:, :, [2, 1, 0]]
|
|
det_img = torch.sub(det_img, 127.5)
|
|
det_img = torch.div(det_img, 128.0)
|
|
det_img = det_img.permute(2, 0, 1)
|
|
|
|
|
|
det_img = torch.unsqueeze(det_img, 0).contiguous()
|
|
|
|
io_binding = self.retinaface_model.io_binding()
|
|
io_binding.bind_input(name='input.1', device_type='cuda', device_id=0, element_type=np.float32, shape=det_img.size(), buffer_ptr=det_img.data_ptr())
|
|
|
|
io_binding.bind_output('448', 'cuda')
|
|
io_binding.bind_output('471', 'cuda')
|
|
io_binding.bind_output('494', 'cuda')
|
|
io_binding.bind_output('451', 'cuda')
|
|
io_binding.bind_output('474', 'cuda')
|
|
io_binding.bind_output('497', 'cuda')
|
|
io_binding.bind_output('454', 'cuda')
|
|
io_binding.bind_output('477', 'cuda')
|
|
io_binding.bind_output('500', 'cuda')
|
|
|
|
|
|
self.syncvec.cpu()
|
|
self.retinaface_model.run_with_iobinding(io_binding)
|
|
|
|
net_outs = io_binding.copy_outputs_to_cpu()
|
|
|
|
input_height = det_img.shape[2]
|
|
input_width = det_img.shape[3]
|
|
|
|
fmc = 3
|
|
center_cache = {}
|
|
scores_list = []
|
|
bboxes_list = []
|
|
kpss_list = []
|
|
for idx, stride in enumerate([8, 16, 32]):
|
|
scores = net_outs[idx]
|
|
bbox_preds = net_outs[idx + fmc]
|
|
bbox_preds = bbox_preds * stride
|
|
|
|
kps_preds = net_outs[idx + fmc * 2] * stride
|
|
height = input_height // stride
|
|
width = input_width // stride
|
|
K = height * width
|
|
key = (height, width, stride)
|
|
if key in center_cache:
|
|
anchor_centers = center_cache[key]
|
|
else:
|
|
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
|
|
anchor_centers = (anchor_centers * stride).reshape((-1, 2))
|
|
anchor_centers = np.stack([anchor_centers] * 2, axis=1).reshape((-1, 2))
|
|
if len(center_cache) < 100:
|
|
center_cache[key] = anchor_centers
|
|
|
|
pos_inds = np.where(scores >= score)[0]
|
|
|
|
x1 = anchor_centers[:, 0] - bbox_preds[:, 0]
|
|
y1 = anchor_centers[:, 1] - bbox_preds[:, 1]
|
|
x2 = anchor_centers[:, 0] + bbox_preds[:, 2]
|
|
y2 = anchor_centers[:, 1] + bbox_preds[:, 3]
|
|
|
|
bboxes = np.stack([x1, y1, x2, y2], axis=-1)
|
|
|
|
pos_scores = scores[pos_inds]
|
|
pos_bboxes = bboxes[pos_inds]
|
|
scores_list.append(pos_scores)
|
|
bboxes_list.append(pos_bboxes)
|
|
|
|
preds = []
|
|
for i in range(0, kps_preds.shape[1], 2):
|
|
px = anchor_centers[:, i % 2] + kps_preds[:, i]
|
|
py = anchor_centers[:, i % 2 + 1] + kps_preds[:, i + 1]
|
|
|
|
preds.append(px)
|
|
preds.append(py)
|
|
kpss = np.stack(preds, axis=-1)
|
|
|
|
kpss = kpss.reshape((kpss.shape[0], -1, 2))
|
|
pos_kpss = kpss[pos_inds]
|
|
kpss_list.append(pos_kpss)
|
|
|
|
|
|
scores = np.vstack(scores_list)
|
|
scores_ravel = scores.ravel()
|
|
order = scores_ravel.argsort()[::-1]
|
|
|
|
det_scale = det_scale.numpy()
|
|
|
|
bboxes = np.vstack(bboxes_list) / det_scale
|
|
|
|
kpss = np.vstack(kpss_list) / det_scale
|
|
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
|
|
pre_det = pre_det[order, :]
|
|
|
|
|
|
|
|
dets = pre_det
|
|
thresh = 0.4
|
|
x1 = dets[:, 0]
|
|
y1 = dets[:, 1]
|
|
x2 = dets[:, 2]
|
|
y2 = dets[:, 3]
|
|
scoresb = dets[:, 4]
|
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
orderb = scoresb.argsort()[::-1]
|
|
|
|
keep = []
|
|
person_id = 0
|
|
people = {}
|
|
|
|
while orderb.size > 0:
|
|
|
|
i = orderb[0]
|
|
keep.append(i)
|
|
|
|
people[person_id] = orderb[0]
|
|
|
|
|
|
|
|
xx1 = np.maximum(x1[i], x1[orderb[1:]])
|
|
yy1 = np.maximum(y1[i], y1[orderb[1:]])
|
|
xx2 = np.minimum(x2[i], x2[orderb[1:]])
|
|
yy2 = np.minimum(y2[i], y2[orderb[1:]])
|
|
|
|
w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
|
|
inter = w * h
|
|
|
|
|
|
ovr = inter / (areas[i] + areas[orderb[1:]] - inter)
|
|
|
|
|
|
inds0 = np.where(ovr > thresh)[0]
|
|
people[person_id] = np.hstack((people[person_id], orderb[inds0+1])).astype(np.int, copy=False)
|
|
|
|
|
|
|
|
inds = np.where(ovr <= thresh)[0]
|
|
|
|
|
|
|
|
orderb = orderb[inds+1]
|
|
person_id += 1
|
|
|
|
|
|
|
|
det = pre_det[keep, :]
|
|
|
|
|
|
kpss = kpss[order, :, :]
|
|
|
|
|
|
|
|
|
|
kpss_ave = []
|
|
for person in people:
|
|
|
|
|
|
|
|
kpss_ave.append(np.mean(kpss[people[person], :, :], axis=0).tolist())
|
|
|
|
|
|
if max_num > 0 and det.shape[0] > max_num:
|
|
area = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
|
|
det_img_center = det_img.shape[0] // 2, det_img.shape[1] // 2
|
|
offsets = np.vstack([
|
|
(det[:, 0] + det[:, 2]) / 2 - det_img_center[1],
|
|
(det[:, 1] + det[:, 3]) / 2 - det_img_center[0]
|
|
])
|
|
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
|
|
|
|
values = area - offset_dist_squared * 2.0
|
|
bindex = np.argsort(values)[::-1]
|
|
bindex = bindex[0:max_num]
|
|
|
|
det = det[bindex, :]
|
|
if kpss is not None:
|
|
kpss = kpss[bindex, :]
|
|
|
|
|
|
|
|
|
|
det = np.delete(det, 4, 1)
|
|
|
|
return kpss_ave
|
|
|
|
def detect_scrdf(self, img, max_num, score, use_landmark_detection, landmark_detect_mode, landmark_score, from_points):
|
|
if use_landmark_detection:
|
|
img_landmark = img.clone()
|
|
|
|
|
|
input_size = (640, 640)
|
|
im_ratio = torch.div(img.size()[1], img.size()[2])
|
|
|
|
model_ratio = float(input_size[1]) / input_size[0]
|
|
if im_ratio>model_ratio:
|
|
new_height = input_size[1]
|
|
new_width = int(new_height / im_ratio)
|
|
else:
|
|
new_width = input_size[0]
|
|
new_height = int(new_width * im_ratio)
|
|
det_scale = torch.div(new_height, img.size()[1])
|
|
|
|
resize = v2.Resize((new_height, new_width), antialias=True)
|
|
img = resize(img)
|
|
img = img.permute(1,2,0)
|
|
|
|
det_img = torch.zeros((input_size[1], input_size[0], 3), dtype=torch.float32, device='cuda:0')
|
|
det_img[:new_height,:new_width, :] = img
|
|
|
|
|
|
det_img = det_img[:, :, [2,1,0]]
|
|
det_img = torch.sub(det_img, 127.5)
|
|
det_img = torch.div(det_img, 128.0)
|
|
det_img = det_img.permute(2, 0, 1)
|
|
|
|
|
|
det_img = torch.unsqueeze(det_img, 0).contiguous()
|
|
input_name = self.scrdf_model.get_inputs()[0].name
|
|
|
|
outputs = self.scrdf_model.get_outputs()
|
|
output_names = []
|
|
for o in outputs:
|
|
output_names.append(o.name)
|
|
|
|
io_binding = self.scrdf_model.io_binding()
|
|
io_binding.bind_input(name=input_name, device_type='cuda', device_id=0, element_type=np.float32, shape=det_img.size(), buffer_ptr=det_img.data_ptr())
|
|
|
|
for i in range(len(output_names)):
|
|
io_binding.bind_output(output_names[i], 'cuda')
|
|
|
|
|
|
syncvec = self.syncvec.cpu()
|
|
self.scrdf_model.run_with_iobinding(io_binding)
|
|
|
|
net_outs = io_binding.copy_outputs_to_cpu()
|
|
|
|
input_height = det_img.shape[2]
|
|
input_width = det_img.shape[3]
|
|
|
|
fmc = 3
|
|
center_cache = {}
|
|
scores_list = []
|
|
bboxes_list = []
|
|
kpss_list = []
|
|
for idx, stride in enumerate([8, 16, 32]):
|
|
scores = net_outs[idx]
|
|
bbox_preds = net_outs[idx+fmc]
|
|
bbox_preds = bbox_preds * stride
|
|
|
|
kps_preds = net_outs[idx+fmc*2] * stride
|
|
height = input_height // stride
|
|
width = input_width // stride
|
|
K = height * width
|
|
key = (height, width, stride)
|
|
if key in center_cache:
|
|
anchor_centers = center_cache[key]
|
|
else:
|
|
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
|
|
anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
|
|
anchor_centers = np.stack([anchor_centers]*2, axis=1).reshape( (-1,2) )
|
|
if len(center_cache)<100:
|
|
center_cache[key] = anchor_centers
|
|
|
|
pos_inds = np.where(scores>=score)[0]
|
|
|
|
x1 = anchor_centers[:, 0] - bbox_preds[:, 0]
|
|
y1 = anchor_centers[:, 1] - bbox_preds[:, 1]
|
|
x2 = anchor_centers[:, 0] + bbox_preds[:, 2]
|
|
y2 = anchor_centers[:, 1] + bbox_preds[:, 3]
|
|
|
|
bboxes = np.stack([x1, y1, x2, y2], axis=-1)
|
|
|
|
pos_scores = scores[pos_inds]
|
|
pos_bboxes = bboxes[pos_inds]
|
|
scores_list.append(pos_scores)
|
|
bboxes_list.append(pos_bboxes)
|
|
|
|
preds = []
|
|
for i in range(0, kps_preds.shape[1], 2):
|
|
px = anchor_centers[:, i%2] + kps_preds[:, i]
|
|
py = anchor_centers[:, i%2+1] + kps_preds[:, i+1]
|
|
|
|
preds.append(px)
|
|
preds.append(py)
|
|
kpss = np.stack(preds, axis=-1)
|
|
|
|
kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
|
|
pos_kpss = kpss[pos_inds]
|
|
kpss_list.append(pos_kpss)
|
|
|
|
scores = np.vstack(scores_list)
|
|
scores_ravel = scores.ravel()
|
|
order = scores_ravel.argsort()[::-1]
|
|
|
|
det_scale = det_scale.numpy()
|
|
|
|
bboxes = np.vstack(bboxes_list) / det_scale
|
|
|
|
kpss = np.vstack(kpss_list) / det_scale
|
|
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
|
|
pre_det = pre_det[order, :]
|
|
|
|
dets = pre_det
|
|
thresh = 0.4
|
|
x1 = dets[:, 0]
|
|
y1 = dets[:, 1]
|
|
x2 = dets[:, 2]
|
|
y2 = dets[:, 3]
|
|
scoresb = dets[:, 4]
|
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
orderb = scoresb.argsort()[::-1]
|
|
|
|
keep = []
|
|
while orderb.size > 0:
|
|
i = orderb[0]
|
|
keep.append(i)
|
|
xx1 = np.maximum(x1[i], x1[orderb[1:]])
|
|
yy1 = np.maximum(y1[i], y1[orderb[1:]])
|
|
xx2 = np.minimum(x2[i], x2[orderb[1:]])
|
|
yy2 = np.minimum(y2[i], y2[orderb[1:]])
|
|
|
|
w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
|
|
inter = w * h
|
|
ovr = inter / (areas[i] + areas[orderb[1:]] - inter)
|
|
|
|
inds = np.where(ovr <= thresh)[0]
|
|
orderb = orderb[inds + 1]
|
|
|
|
det = pre_det[keep, :]
|
|
|
|
kpss = kpss[order,:,:]
|
|
kpss = kpss[keep,:,:]
|
|
|
|
if max_num > 0 and det.shape[0] > max_num:
|
|
area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
|
|
det[:, 1])
|
|
det_img_center = det_img.shape[0] // 2, det_img.shape[1] // 2
|
|
offsets = np.vstack([
|
|
(det[:, 0] + det[:, 2]) / 2 - det_img_center[1],
|
|
(det[:, 1] + det[:, 3]) / 2 - det_img_center[0]
|
|
])
|
|
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
|
|
|
|
values = area - offset_dist_squared * 2.0
|
|
bindex = np.argsort(values)[::-1]
|
|
bindex = bindex[0:max_num]
|
|
|
|
det = det[bindex, :]
|
|
if kpss is not None:
|
|
kpss = kpss[bindex, :]
|
|
|
|
score_values = det[:, 4]
|
|
|
|
det = np.delete(det, 4, 1)
|
|
|
|
if use_landmark_detection and len(kpss) > 0:
|
|
for i in range(kpss.shape[0]):
|
|
landmark_kpss, landmark_scores = self.run_detect_landmark(img_landmark, det[i], kpss[i], landmark_detect_mode, landmark_score, from_points)
|
|
if len(landmark_kpss) > 0:
|
|
if len(landmark_scores) > 0:
|
|
|
|
|
|
if np.mean(landmark_scores) > np.mean(score_values[i]):
|
|
kpss[i] = landmark_kpss
|
|
else:
|
|
kpss[i] = landmark_kpss
|
|
|
|
return det, kpss
|
|
|
|
def detect_yoloface(self, img, max_num, score, use_landmark_detection, landmark_detect_mode, landmark_score, from_points):
|
|
if use_landmark_detection:
|
|
img_landmark = img.clone()
|
|
|
|
height = img.size(dim=1)
|
|
width = img.size(dim=2)
|
|
length = max((height, width))
|
|
|
|
image = torch.zeros((length, length, 3), dtype=torch.uint8, device='cuda')
|
|
img = img.permute(1,2,0)
|
|
|
|
image[0:height, 0:width] = img
|
|
scale = length/640.0
|
|
image = torch.div(image, 255.0)
|
|
|
|
t640 = v2.Resize((640, 640), antialias=False)
|
|
image = image.permute(2, 0, 1)
|
|
image = t640(image)
|
|
|
|
image = torch.unsqueeze(image, 0).contiguous()
|
|
|
|
io_binding = self.yoloface_model.io_binding()
|
|
io_binding.bind_input(name='images', device_type='cuda', device_id=0, element_type=np.float32, shape=image.size(), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_output('output0', 'cuda')
|
|
|
|
|
|
self.syncvec.cpu()
|
|
self.yoloface_model.run_with_iobinding(io_binding)
|
|
|
|
net_outs = io_binding.copy_outputs_to_cpu()
|
|
|
|
outputs = np.squeeze(net_outs).T
|
|
|
|
bbox_raw, score_raw, kps_raw = np.split(outputs, [4, 5], axis=1)
|
|
|
|
bbox_list = []
|
|
score_list = []
|
|
kps_list = []
|
|
keep_indices = np.where(score_raw > score)[0]
|
|
|
|
if keep_indices.any():
|
|
bbox_raw, kps_raw, score_raw = bbox_raw[keep_indices], kps_raw[keep_indices], score_raw[keep_indices]
|
|
|
|
bbox_raw = bbox_raw * scale
|
|
|
|
for bbox in bbox_raw:
|
|
bbox_list.append(np.array([(bbox[0]-bbox[2]/2), (bbox[1]-bbox[3]/2), (bbox[0]+bbox[2]/2), (bbox[1]+bbox[3]/2)]))
|
|
|
|
kps_raw = kps_raw * scale
|
|
|
|
for kps in kps_raw:
|
|
indexes = np.arange(0, len(kps), 3)
|
|
temp_kps = []
|
|
for index in indexes:
|
|
temp_kps.append([kps[index], kps[index + 1]])
|
|
kps_list.append(np.array(temp_kps))
|
|
score_list = score_raw.ravel().tolist()
|
|
|
|
result_boxes = cv2.dnn.NMSBoxes(bbox_list, score_list, 0.25, 0.45, 0.5)
|
|
|
|
bboxes_list = []
|
|
kpss_list = []
|
|
for r in result_boxes:
|
|
if r==max_num:
|
|
break
|
|
if use_landmark_detection and len(kps_list[r]) > 0:
|
|
landmark_kpss, landmark_scores = self.run_detect_landmark(img_landmark, bbox_list[r], kps_list[r], landmark_detect_mode, landmark_score, from_points)
|
|
if len(landmark_kpss) > 0:
|
|
if len(landmark_scores) > 0:
|
|
|
|
|
|
if np.mean(landmark_scores) > np.mean(score_list[r]):
|
|
kps_list[r] = landmark_kpss
|
|
else:
|
|
kps_list[r] = landmark_kpss
|
|
|
|
bboxes_list.append(bbox_list[r])
|
|
kpss_list.append(kps_list[r])
|
|
|
|
return np.array(bboxes_list), np.array(kpss_list)
|
|
|
|
def detect_yoloface2(self, image_in, max_num, score):
|
|
img = image_in.detach().clone()
|
|
|
|
height = img.size(dim=1)
|
|
width = img.size(dim=2)
|
|
length = max((height, width))
|
|
|
|
image = torch.zeros((length, length, 3), dtype=torch.uint8,
|
|
device='cuda')
|
|
img = img.permute(1, 2, 0)
|
|
|
|
image[0:height, 0:width] = img
|
|
scale = length / 640.0
|
|
image = torch.div(image, 255.0)
|
|
|
|
t640 = v2.Resize((640, 640), antialias=False)
|
|
image = image.permute(2, 0, 1)
|
|
image = t640(image)
|
|
|
|
image = torch.unsqueeze(image, 0).contiguous()
|
|
|
|
io_binding = self.yoloface_model.io_binding()
|
|
io_binding.bind_input(name='images', device_type='cuda', device_id=0,
|
|
element_type=np.float32, shape=image.size(),
|
|
buffer_ptr=image.data_ptr())
|
|
io_binding.bind_output('output0', 'cuda')
|
|
|
|
|
|
self.syncvec.cpu()
|
|
self.yoloface_model.run_with_iobinding(io_binding)
|
|
|
|
net_outs = io_binding.copy_outputs_to_cpu()
|
|
|
|
outputs = np.squeeze(net_outs).T
|
|
|
|
bbox_raw, score_raw, kps_raw = np.split(outputs, [4, 5], axis=1)
|
|
|
|
bbox_list = []
|
|
score_list = []
|
|
kps_list = []
|
|
keep_indices = np.where(score_raw > score)[0]
|
|
|
|
if keep_indices.any():
|
|
bbox_raw, kps_raw, score_raw = bbox_raw[keep_indices], kps_raw[
|
|
keep_indices], score_raw[keep_indices]
|
|
for bbox in bbox_raw:
|
|
bbox_list.append(np.array(
|
|
[(bbox[0] - bbox[2] / 2), (bbox[1] - bbox[3] / 2),
|
|
(bbox[0] + bbox[2] / 2), (bbox[1] + bbox[3] / 2)]))
|
|
kps_raw = kps_raw * scale
|
|
|
|
for kps in kps_raw:
|
|
indexes = np.arange(0, len(kps), 3)
|
|
temp_kps = []
|
|
for index in indexes:
|
|
temp_kps.append([kps[index], kps[index + 1]])
|
|
kps_list.append(np.array(temp_kps))
|
|
score_list = score_raw.ravel().tolist()
|
|
|
|
result_boxes = cv2.dnn.NMSBoxes(bbox_list, score_list, 0.25, 0.45, 0.5)
|
|
|
|
result = []
|
|
for r in result_boxes:
|
|
if r == max_num:
|
|
break
|
|
bbox_list = bbox_list[r]
|
|
result.append(kps_list[r])
|
|
bbox_list = bbox_list*scale
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = image_in.detach().clone()
|
|
|
|
img = img[:, int(bbox_list[1]):int(bbox_list[3]), int(bbox_list[0]):int(bbox_list[2])]
|
|
|
|
|
|
|
|
height = img.size(dim=1)
|
|
width = img.size(dim=2)
|
|
length = max((height, width))
|
|
|
|
image = torch.zeros((length, length, 3), dtype=torch.uint8, device='cuda')
|
|
img = img.permute(1,2,0)
|
|
|
|
image[0:height, 0:width] = img
|
|
scale = length/192
|
|
image = torch.div(image, 255.0)
|
|
|
|
|
|
t192 = v2.Resize((192, 192), antialias=False)
|
|
image = image.permute(2, 0, 1)
|
|
image = t192(image)
|
|
|
|
test = image_in.detach().clone().permute(1, 2, 0)
|
|
test = test.cpu().numpy()
|
|
|
|
input_mean = 0.0
|
|
input_std = 1.0
|
|
|
|
self.lmk_dim = 2
|
|
self.lmk_num = 106
|
|
|
|
bbox = bbox_list
|
|
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
|
|
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
|
|
rotate = 0
|
|
_scale = 192 / (max(w, h) * 1.5)
|
|
|
|
aimg, M = self.transform(test, center, 192, _scale, rotate)
|
|
input_size = tuple(aimg.shape[0:2][::-1])
|
|
|
|
blob = cv2.dnn.blobFromImage(aimg, 1.0 / input_std, input_size, ( input_mean, input_mean, input_mean), swapRB=True)
|
|
pred = self.insight106_model.run(['fc1'], {'data': blob})[0][0]
|
|
if pred.shape[0] >= 3000:
|
|
pred = pred.reshape((-1, 3))
|
|
else:
|
|
pred = pred.reshape((-1, 2))
|
|
if self.lmk_num < pred.shape[0]:
|
|
pred = pred[self.lmk_num * -1:, :]
|
|
pred[:, 0:2] += 1
|
|
pred[:, 0:2] *= 96
|
|
if pred.shape[1] == 3:
|
|
pred[:, 2] *= (106)
|
|
|
|
IM = cv2.invertAffineTransform(M)
|
|
pred = self.trans_points2d(pred, IM)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for point in pred:
|
|
test[int(point[1])] [int(point[0])] [0] = 255
|
|
test[int(point[1])] [int(point[0])] [1] = 255
|
|
test[int(point[1])] [int(point[0])] [2] = 255
|
|
cv2.imwrite('2.jpg', test)
|
|
|
|
predd = []
|
|
predd.append(pred[38])
|
|
predd.append(pred[88])
|
|
|
|
|
|
|
|
|
|
predd.append(kps_list[0][2])
|
|
predd.append(kps_list[0][3])
|
|
predd.append(kps_list[0][4])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preddd=[]
|
|
preddd.append(predd)
|
|
return np.array(preddd)
|
|
def transform(self, data, center, output_size, scale, rotation):
|
|
scale_ratio = scale
|
|
rot = float(rotation) * np.pi / 180.0
|
|
|
|
t1 = trans.SimilarityTransform(scale=scale_ratio)
|
|
cx = center[0] * scale_ratio
|
|
cy = center[1] * scale_ratio
|
|
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
|
|
t3 = trans.SimilarityTransform(rotation=rot)
|
|
t4 = trans.SimilarityTransform(translation=(output_size / 2,
|
|
output_size / 2))
|
|
t = t1 + t2 + t3 + t4
|
|
M = t.params[0:2]
|
|
cropped = cv2.warpAffine(data,
|
|
M, (output_size, output_size),
|
|
borderValue=0.0)
|
|
return cropped, M
|
|
|
|
def trans_points2d(self, pts, M):
|
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
|
|
for i in range(pts.shape[0]):
|
|
pt = pts[i]
|
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
|
|
new_pt = np.dot(M, new_pt)
|
|
|
|
new_pts[i] = new_pt[0:2]
|
|
|
|
return new_pts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def detect_yunet(self, img, max_num, score, use_landmark_detection, landmark_detect_mode, landmark_score, from_points):
|
|
if use_landmark_detection:
|
|
img_landmark = img.clone()
|
|
|
|
height = img.size(dim=1)
|
|
width = img.size(dim=2)
|
|
input_size = (640, 640)
|
|
im_ratio = float(height) / width
|
|
model_ratio = float(input_size[1]) / input_size[0]
|
|
if im_ratio > model_ratio:
|
|
new_height = input_size[1]
|
|
new_width = int(new_height / im_ratio)
|
|
else:
|
|
new_width = input_size[0]
|
|
new_height = int(new_width * im_ratio)
|
|
det_scale = float(new_height) / height
|
|
|
|
t640 = v2.Resize((new_height, new_width), antialias=False)
|
|
img = t640(img)
|
|
|
|
|
|
img = img.permute(1,2,0)
|
|
img = img[:, :, [2,1,0]]
|
|
|
|
image = torch.zeros((input_size[1], input_size[0], 3), dtype=torch.uint8, device='cuda')
|
|
image[:new_height, :new_width, :] = img
|
|
|
|
image = image.permute(2, 0, 1)
|
|
image = torch.unsqueeze(image, 0).contiguous()
|
|
image = image.to(dtype=torch.float32)
|
|
|
|
input_name = self.yunet_model.get_inputs()[0].name
|
|
outputs = self.yunet_model.get_outputs()
|
|
output_names = []
|
|
for o in outputs:
|
|
output_names.append(o.name)
|
|
|
|
io_binding = self.yunet_model.io_binding()
|
|
io_binding.bind_input(name=input_name, device_type='cuda', device_id=0, element_type=np.float32, shape=image.size(), buffer_ptr=image.data_ptr())
|
|
|
|
for i in range(len(output_names)):
|
|
io_binding.bind_output(output_names[i], 'cuda')
|
|
|
|
|
|
syncvec = self.syncvec.cpu()
|
|
self.yunet_model.run_with_iobinding(io_binding)
|
|
net_outs = io_binding.copy_outputs_to_cpu()
|
|
|
|
strides = [8, 16, 32]
|
|
scores, bboxes, kpss = [], [], []
|
|
for idx, stride in enumerate(strides):
|
|
cls_pred = net_outs[idx].reshape(-1, 1)
|
|
obj_pred = net_outs[idx + len(strides)].reshape(-1, 1)
|
|
reg_pred = net_outs[idx + len(strides) * 2].reshape(-1, 4)
|
|
kps_pred = net_outs[idx + len(strides) * 3].reshape(
|
|
-1, 5 * 2)
|
|
|
|
anchor_centers = np.stack(
|
|
np.mgrid[:(input_size[1] // stride), :(input_size[0] //
|
|
stride)][::-1],
|
|
axis=-1)
|
|
anchor_centers = (anchor_centers * stride).astype(
|
|
np.float32).reshape(-1, 2)
|
|
|
|
bbox_cxy = reg_pred[:, :2] * stride + anchor_centers[:]
|
|
bbox_wh = np.exp(reg_pred[:, 2:]) * stride
|
|
tl_x = (bbox_cxy[:, 0] - bbox_wh[:, 0] / 2.)
|
|
tl_y = (bbox_cxy[:, 1] - bbox_wh[:, 1] / 2.)
|
|
br_x = (bbox_cxy[:, 0] + bbox_wh[:, 0] / 2.)
|
|
br_y = (bbox_cxy[:, 1] + bbox_wh[:, 1] / 2.)
|
|
|
|
bboxes.append(np.stack([tl_x, tl_y, br_x, br_y], -1))
|
|
|
|
per_kps = np.concatenate(
|
|
[((kps_pred[:, [2 * i, 2 * i + 1]] * stride) + anchor_centers)
|
|
for i in range(5)],
|
|
axis=-1)
|
|
|
|
kpss.append(per_kps)
|
|
scores.append(cls_pred * obj_pred)
|
|
|
|
scores = np.concatenate(scores, axis=0).reshape(-1)
|
|
bboxes = np.concatenate(bboxes, axis=0)
|
|
kpss = np.concatenate(kpss, axis=0)
|
|
score_mask = (scores > score)
|
|
scores = scores[score_mask]
|
|
bboxes = bboxes[score_mask]
|
|
kpss = kpss[score_mask]
|
|
|
|
bboxes /= det_scale
|
|
kpss /= det_scale
|
|
pre_det = np.hstack((bboxes, scores[:, None]))
|
|
|
|
dets = pre_det
|
|
thresh = 0.4
|
|
x1 = dets[:, 0]
|
|
y1 = dets[:, 1]
|
|
x2 = dets[:, 2]
|
|
y2 = dets[:, 3]
|
|
scoresb = dets[:, -1]
|
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
order = scoresb.argsort()[::-1]
|
|
|
|
keep = []
|
|
while order.size > 0:
|
|
i = order[0]
|
|
keep.append(i)
|
|
xx1 = np.maximum(x1[i], x1[order[1:]])
|
|
yy1 = np.maximum(y1[i], y1[order[1:]])
|
|
xx2 = np.minimum(x2[i], x2[order[1:]])
|
|
yy2 = np.minimum(y2[i], y2[order[1:]])
|
|
|
|
w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
inter = w * h
|
|
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
|
|
|
inds = np.where(ovr <= thresh)[0]
|
|
order = order[inds + 1]
|
|
|
|
kpss = kpss[keep, :]
|
|
bboxes = pre_det[keep, :]
|
|
score_values = bboxes[:, 4]
|
|
|
|
bbox_list = []
|
|
kps_list = []
|
|
for i in range(bboxes.shape[0]):
|
|
if i==max_num:
|
|
break
|
|
box = np.array((bboxes[i][0], bboxes[i][1], bboxes[i][2], bboxes[i][3]))
|
|
bbox_list.append(box)
|
|
|
|
if kpss is not None:
|
|
kps = kpss[i].reshape(-1, 2)
|
|
if use_landmark_detection and len(kps) > 0:
|
|
landmark_kpss, landmark_scores = self.run_detect_landmark(img_landmark, box, kps, landmark_detect_mode, landmark_score, from_points)
|
|
if len(landmark_kpss) > 0:
|
|
if len(landmark_scores) > 0:
|
|
|
|
|
|
if np.mean(landmark_scores) > np.mean(score_values[i]):
|
|
kps = landmark_kpss
|
|
else:
|
|
kps = landmark_kpss
|
|
|
|
kps_list.append(kps)
|
|
|
|
return np.array(bbox_list), np.array(kps_list)
|
|
|
|
def detect_face_landmark_5(self, img, bbox, det_kpss, from_points=False):
|
|
if from_points == False:
|
|
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
|
|
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
|
|
rotate = 0
|
|
_scale = 512.0 / (max(w, h)*1.5)
|
|
image, M = faceutil.transform(img, center, 512, _scale, rotate)
|
|
else:
|
|
image, M = faceutil.warp_face_by_face_landmark_5(img, det_kpss, 512, normalized=True)
|
|
|
|
image = image.permute(1,2,0)
|
|
|
|
mean = torch.tensor([104, 117, 123], dtype=torch.float32, device='cuda')
|
|
image = torch.sub(image, mean)
|
|
|
|
image = image.permute(2,0,1)
|
|
image = torch.reshape(image, (1, 3, 512, 512))
|
|
|
|
height, width = (512, 512)
|
|
tmp = [width, height, width, height, width, height, width, height, width, height]
|
|
scale1 = torch.tensor(tmp, dtype=torch.float32, device='cuda')
|
|
|
|
conf = torch.empty((1,10752,2), dtype=torch.float32, device='cuda').contiguous()
|
|
landmarks = torch.empty((1,10752,10), dtype=torch.float32, device='cuda').contiguous()
|
|
|
|
io_binding = self.resnet50_model.io_binding()
|
|
io_binding.bind_input(name='input', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,512,512), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_output(name='conf', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,10752,2), buffer_ptr=conf.data_ptr())
|
|
io_binding.bind_output(name='landmarks', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,10752,10), buffer_ptr=landmarks.data_ptr())
|
|
|
|
torch.cuda.synchronize('cuda')
|
|
self.resnet50_model.run_with_iobinding(io_binding)
|
|
|
|
scores = torch.squeeze(conf)[:, 1]
|
|
priors = torch.tensor(self.anchors).view(-1, 4)
|
|
priors = priors.to('cuda')
|
|
|
|
pre = torch.squeeze(landmarks, 0)
|
|
|
|
tmp = (priors[:, :2] + pre[:, :2] * 0.1 * priors[:, 2:], priors[:, :2] + pre[:, 2:4] * 0.1 * priors[:, 2:], priors[:, :2] + pre[:, 4:6] * 0.1 * priors[:, 2:], priors[:, :2] + pre[:, 6:8] * 0.1 * priors[:, 2:], priors[:, :2] + pre[:, 8:10] * 0.1 * priors[:, 2:])
|
|
landmarks = torch.cat(tmp, dim=1)
|
|
landmarks = torch.mul(landmarks, scale1)
|
|
|
|
landmarks = landmarks.cpu().numpy()
|
|
|
|
|
|
score=.1
|
|
inds = torch.where(scores>score)[0]
|
|
inds = inds.cpu().numpy()
|
|
scores = scores.cpu().numpy()
|
|
|
|
landmarks, scores = landmarks[inds], scores[inds]
|
|
|
|
|
|
order = scores.argsort()[::-1]
|
|
|
|
if len(order) > 0:
|
|
landmarks = landmarks[order][0]
|
|
scores = scores[order][0]
|
|
|
|
landmarks = np.array([[landmarks[i], landmarks[i + 1]] for i in range(0,10,2)])
|
|
|
|
IM = faceutil.invertAffineTransform(M)
|
|
landmarks = faceutil.trans_points2d(landmarks, IM)
|
|
scores = np.array([scores])
|
|
|
|
|
|
|
|
|
|
return landmarks, scores
|
|
|
|
return [], []
|
|
|
|
def detect_face_landmark_68(self, img, bbox, det_kpss, convert68_5=True, from_points=False):
|
|
if from_points == False:
|
|
crop_image, affine_matrix = faceutil.warp_face_by_bounding_box_for_landmark_68(img, bbox, (256, 256))
|
|
else:
|
|
crop_image, affine_matrix = faceutil.warp_face_by_face_landmark_5(img, det_kpss, 256, normalized=True)
|
|
'''
|
|
cv2.imshow('image', crop_image.permute(1, 2, 0).to('cpu').numpy())
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows()
|
|
'''
|
|
crop_image = crop_image.to(dtype=torch.float32)
|
|
crop_image = torch.div(crop_image, 255.0)
|
|
crop_image = torch.unsqueeze(crop_image, 0).contiguous()
|
|
|
|
io_binding = self.face_landmark_68_model.io_binding()
|
|
io_binding.bind_input(name='input', device_type='cuda', device_id=0, element_type=np.float32, shape=crop_image.size(), buffer_ptr=crop_image.data_ptr())
|
|
|
|
io_binding.bind_output('landmarks_xyscore', 'cuda')
|
|
io_binding.bind_output('heatmaps', 'cuda')
|
|
|
|
|
|
syncvec = self.syncvec.cpu()
|
|
self.face_landmark_68_model.run_with_iobinding(io_binding)
|
|
net_outs = io_binding.copy_outputs_to_cpu()
|
|
face_landmark_68 = net_outs[0]
|
|
face_heatmap = net_outs[1]
|
|
|
|
face_landmark_68 = face_landmark_68[:, :, :2][0] / 64.0
|
|
face_landmark_68 = face_landmark_68.reshape(1, -1, 2) * 256.0
|
|
face_landmark_68 = cv2.transform(face_landmark_68, cv2.invertAffineTransform(affine_matrix))
|
|
|
|
face_landmark_68 = face_landmark_68.reshape(-1, 2)
|
|
face_landmark_68_score = np.amax(face_heatmap, axis = (2, 3))
|
|
face_landmark_68_score = face_landmark_68_score.reshape(-1, 1)
|
|
|
|
if convert68_5:
|
|
face_landmark_68, face_landmark_68_score = faceutil.convert_face_landmark_68_to_5(face_landmark_68, face_landmark_68_score)
|
|
|
|
|
|
|
|
return face_landmark_68, face_landmark_68_score
|
|
|
|
def detect_face_landmark_3d68(self, img, bbox, det_kpss, convert68_5=True, from_points=False):
|
|
if from_points == False:
|
|
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
|
|
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
|
|
rotate = 0
|
|
_scale = 192 / (max(w, h)*1.5)
|
|
|
|
aimg, M = faceutil.transform(img, center, 192, _scale, rotate)
|
|
else:
|
|
aimg, M = faceutil.warp_face_by_face_landmark_5(img, det_kpss, image_size=192, normalized=True)
|
|
'''
|
|
cv2.imshow('image', aimg.permute(1.2.0).to('cpu').numpy())
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows()
|
|
'''
|
|
aimg = torch.unsqueeze(aimg, 0).contiguous()
|
|
aimg = aimg.to(dtype=torch.float32)
|
|
aimg = self.normalize(aimg)
|
|
io_binding = self.face_landmark_3d68_model.io_binding()
|
|
io_binding.bind_input(name='data', device_type='cuda', device_id=0, element_type=np.float32, shape=aimg.size(), buffer_ptr=aimg.data_ptr())
|
|
|
|
io_binding.bind_output('fc1', 'cuda')
|
|
|
|
|
|
syncvec = self.syncvec.cpu()
|
|
self.face_landmark_3d68_model.run_with_iobinding(io_binding)
|
|
pred = io_binding.copy_outputs_to_cpu()[0][0]
|
|
|
|
if pred.shape[0] >= 3000:
|
|
pred = pred.reshape((-1, 3))
|
|
else:
|
|
pred = pred.reshape((-1, 2))
|
|
if 68 < pred.shape[0]:
|
|
pred = pred[68*-1:,:]
|
|
pred[:, 0:2] += 1
|
|
pred[:, 0:2] *= (192 // 2)
|
|
if pred.shape[1] == 3:
|
|
pred[:, 2] *= (192 // 2)
|
|
|
|
|
|
IM = faceutil.invertAffineTransform(M)
|
|
pred = faceutil.trans_points3d(pred, IM)
|
|
|
|
|
|
'''
|
|
P = faceutil.estimate_affine_matrix_3d23d(self.mean_lmk, pred)
|
|
s, R, t = faceutil.P2sRt(P)
|
|
rx, ry, rz = faceutil.matrix2angle(R)
|
|
pose = np.array( [rx, ry, rz], dtype=np.float32 ) #pitch, yaw, roll
|
|
'''
|
|
|
|
|
|
landmark2d68 = np.array(pred[:, [0, 1]])
|
|
|
|
if convert68_5:
|
|
|
|
landmark2d68, _ = faceutil.convert_face_landmark_68_to_5(landmark2d68, [])
|
|
|
|
|
|
|
|
return landmark2d68, []
|
|
|
|
def detect_face_landmark_98(self, img, bbox, det_kpss, convert98_5=True, from_points=False):
|
|
if from_points == False:
|
|
crop_image, detail = faceutil.warp_face_by_bounding_box_for_landmark_98(img, bbox, (256, 256))
|
|
else:
|
|
crop_image, M = faceutil.warp_face_by_face_landmark_5(img, det_kpss, image_size=256, normalized=True)
|
|
|
|
h, w = (crop_image.size(dim=1), crop_image.size(dim=2))
|
|
'''
|
|
cv2.imshow('image', crop_image.permute(1, 2, 0).to('cpu').numpy())
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows()
|
|
'''
|
|
landmark = []
|
|
landmark_score = []
|
|
if crop_image is not None:
|
|
crop_image = crop_image.to(dtype=torch.float32)
|
|
crop_image = torch.div(crop_image, 255.0)
|
|
crop_image = torch.unsqueeze(crop_image, 0).contiguous()
|
|
|
|
io_binding = self.face_landmark_98_model.io_binding()
|
|
io_binding.bind_input(name='input', device_type='cuda', device_id=0, element_type=np.float32, shape=crop_image.size(), buffer_ptr=crop_image.data_ptr())
|
|
|
|
io_binding.bind_output('landmarks_xyscore', 'cuda')
|
|
|
|
|
|
syncvec = self.syncvec.cpu()
|
|
self.face_landmark_98_model.run_with_iobinding(io_binding)
|
|
landmarks_xyscore = io_binding.copy_outputs_to_cpu()[0]
|
|
|
|
if len(landmarks_xyscore) > 0:
|
|
for one_face_landmarks in landmarks_xyscore:
|
|
landmark_score = one_face_landmarks[:, [2]].reshape(-1)
|
|
landmark = one_face_landmarks[:, [0, 1]].reshape(-1,2)
|
|
|
|
|
|
if from_points == False:
|
|
landmark[:, 0] = landmark[:, 0] * detail[1] + detail[3] - detail[4]
|
|
landmark[:, 1] = landmark[:, 1] * detail[0] + detail[2] - detail[4]
|
|
else:
|
|
landmark[:, 0] = landmark[:, 0] * w
|
|
landmark[:, 1] = landmark[:, 1] * h
|
|
|
|
|
|
|
|
|
|
IM = faceutil.invertAffineTransform(M)
|
|
landmark = faceutil.trans_points2d(landmark, IM)
|
|
|
|
if convert98_5:
|
|
landmark, landmark_score = faceutil.convert_face_landmark_98_to_5(landmark, landmark_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return landmark, landmark_score
|
|
|
|
def detect_face_landmark_106(self, img, bbox, det_kpss, convert106_5=True, from_points=False):
|
|
if from_points == False:
|
|
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
|
|
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
|
|
rotate = 0
|
|
_scale = 192 / (max(w, h)*1.5)
|
|
|
|
aimg, M = faceutil.transform(img, center, 192, _scale, rotate)
|
|
else:
|
|
aimg, M = faceutil.warp_face_by_face_landmark_5(img, det_kpss, image_size=192, normalized=True)
|
|
'''
|
|
cv2.imshow('image', aimg.permute(1.2.0).to('cpu').numpy())
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows()
|
|
'''
|
|
aimg = torch.unsqueeze(aimg, 0).contiguous()
|
|
aimg = aimg.to(dtype=torch.float32)
|
|
aimg = self.normalize(aimg)
|
|
io_binding = self.face_landmark_106_model.io_binding()
|
|
io_binding.bind_input(name='data', device_type='cuda', device_id=0, element_type=np.float32, shape=aimg.size(), buffer_ptr=aimg.data_ptr())
|
|
|
|
io_binding.bind_output('fc1', 'cuda')
|
|
|
|
|
|
syncvec = self.syncvec.cpu()
|
|
self.face_landmark_106_model.run_with_iobinding(io_binding)
|
|
pred = io_binding.copy_outputs_to_cpu()[0][0]
|
|
|
|
if pred.shape[0] >= 3000:
|
|
pred = pred.reshape((-1, 3))
|
|
else:
|
|
pred = pred.reshape((-1, 2))
|
|
|
|
if 106 < pred.shape[0]:
|
|
pred = pred[106*-1:,:]
|
|
|
|
pred[:, 0:2] += 1
|
|
pred[:, 0:2] *= (192 // 2)
|
|
if pred.shape[1] == 3:
|
|
pred[:, 2] *= (192 // 2)
|
|
|
|
|
|
IM = faceutil.invertAffineTransform(M)
|
|
pred = faceutil.trans_points(pred, IM)
|
|
|
|
if pred is not None:
|
|
if convert106_5:
|
|
|
|
pred = faceutil.convert_face_landmark_106_to_5(pred)
|
|
|
|
|
|
|
|
return pred, []
|
|
|
|
def detect_face_landmark_478(self, img, bbox, det_kpss, convert478_5=True, from_points=False):
|
|
if from_points == False:
|
|
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
|
|
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
|
|
rotate = 0
|
|
_scale = 256.0 / (max(w, h)*1.5)
|
|
|
|
aimg, M = faceutil.transform(img, center, 256, _scale, rotate)
|
|
else:
|
|
aimg, M = faceutil.warp_face_by_face_landmark_5(img, det_kpss, 256, normalized=False)
|
|
|
|
'''
|
|
cv2.imshow('image', aimg.permute(1,2,0).to('cpu').numpy())
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows()
|
|
'''
|
|
aimg = torch.unsqueeze(aimg, 0).contiguous()
|
|
aimg = aimg.to(dtype=torch.float32)
|
|
aimg = torch.div(aimg, 255.0)
|
|
io_binding = self.face_landmark_478_model.io_binding()
|
|
io_binding.bind_input(name='input_12', device_type='cuda', device_id=0, element_type=np.float32, shape=aimg.size(), buffer_ptr=aimg.data_ptr())
|
|
|
|
io_binding.bind_output('Identity', 'cuda')
|
|
io_binding.bind_output('Identity_1', 'cuda')
|
|
io_binding.bind_output('Identity_2', 'cuda')
|
|
|
|
|
|
syncvec = self.syncvec.cpu()
|
|
self.face_landmark_478_model.run_with_iobinding(io_binding)
|
|
landmarks, faceflag, blendshapes = io_binding.copy_outputs_to_cpu()
|
|
landmarks = landmarks.reshape( (1,478,3))
|
|
|
|
landmark = []
|
|
landmark_score = []
|
|
if len(landmarks) > 0:
|
|
for one_face_landmarks in landmarks:
|
|
|
|
landmark = one_face_landmarks
|
|
|
|
IM = faceutil.invertAffineTransform(M)
|
|
landmark = faceutil.trans_points3d(landmark, IM)
|
|
'''
|
|
P = faceutil.estimate_affine_matrix_3d23d(self.mean_lmk, landmark)
|
|
s, R, t = faceutil.P2sRt(P)
|
|
rx, ry, rz = faceutil.matrix2angle(R)
|
|
pose = np.array( [rx, ry, rz], dtype=np.float32 ) #pitch, yaw, roll
|
|
'''
|
|
landmark = landmark[:, [0, 1]].reshape(-1,2)
|
|
|
|
|
|
|
|
landmark_for_score = landmark[self.LandmarksSubsetIdxs]
|
|
landmark_for_score = landmark_for_score[:, :2]
|
|
landmark_for_score = np.expand_dims(landmark_for_score, axis=0)
|
|
landmark_for_score = landmark_for_score.astype(np.float32)
|
|
landmark_for_score = torch.from_numpy(landmark_for_score).to('cuda')
|
|
|
|
io_binding_bs = self.face_blendshapes_model.io_binding()
|
|
io_binding_bs.bind_input(name='input_points', device_type='cuda', device_id=0, element_type=np.float32, shape=tuple(landmark_for_score.shape), buffer_ptr=landmark_for_score.data_ptr())
|
|
io_binding_bs.bind_output('output', 'cuda')
|
|
|
|
|
|
syncvec = self.syncvec.cpu()
|
|
self.face_blendshapes_model.run_with_iobinding(io_binding_bs)
|
|
landmark_score = io_binding_bs.copy_outputs_to_cpu()[0]
|
|
|
|
if convert478_5:
|
|
|
|
landmark = faceutil.convert_face_landmark_478_to_5(landmark)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return landmark, []
|
|
|
|
def recognize(self, img, face_kps):
|
|
'''
|
|
# Find transform
|
|
dst = self.arcface_dst.copy()
|
|
dst[:, 0] += 8.0
|
|
|
|
tform = trans.SimilarityTransform()
|
|
tform.estimate(face_kps, dst)
|
|
|
|
# Transform
|
|
img = v2.functional.affine(img, tform.rotation*57.2958, (tform.translation[0], tform.translation[1]) , tform.scale, 0, center = (0,0) )
|
|
img = v2.functional.crop(img, 0,0, 128, 128)
|
|
img = v2.Resize((112, 112), interpolation=v2.InterpolationMode.BILINEAR, antialias=False)(img)
|
|
'''
|
|
|
|
tform = trans.SimilarityTransform()
|
|
tform.estimate(face_kps, self.arcface_dst)
|
|
|
|
|
|
img = v2.functional.affine(img, tform.rotation*57.2958, (tform.translation[0], tform.translation[1]) , tform.scale, 0, center = (0,0) )
|
|
img = v2.functional.crop(img, 0,0, 112, 112)
|
|
|
|
cropped_image = img
|
|
|
|
img = img.permute(1,2,0)
|
|
img = img[:, :, [2,1,0]]
|
|
img = torch.sub(img, 127.5)
|
|
img = torch.div(img, 127.5)
|
|
img = img.permute(2, 0, 1)
|
|
|
|
|
|
img = torch.unsqueeze(img, 0).contiguous()
|
|
input_name = self.recognition_model.get_inputs()[0].name
|
|
|
|
outputs = self.recognition_model.get_outputs()
|
|
output_names = []
|
|
for o in outputs:
|
|
output_names.append(o.name)
|
|
|
|
io_binding = self.recognition_model.io_binding()
|
|
io_binding.bind_input(name=input_name, device_type='cuda', device_id=0, element_type=np.float32, shape=img.size(), buffer_ptr=img.data_ptr())
|
|
|
|
for i in range(len(output_names)):
|
|
io_binding.bind_output(output_names[i], 'cuda')
|
|
|
|
|
|
self.syncvec.cpu()
|
|
self.recognition_model.run_with_iobinding(io_binding)
|
|
|
|
|
|
return np.array(io_binding.copy_outputs_to_cpu()).flatten(), cropped_image
|
|
|
|
def resnet50(self, image, score=.5):
|
|
if not self.resnet50_model:
|
|
self.resnet50_model = onnxruntime.InferenceSession("./models/res50.onnx", providers=self.providers)
|
|
|
|
feature_maps = [[64, 64], [32, 32], [16, 16]]
|
|
min_sizes = [[16, 32], [64, 128], [256, 512]]
|
|
steps = [8, 16, 32]
|
|
image_size = 512
|
|
|
|
for k, f in enumerate(feature_maps):
|
|
min_size_array = min_sizes[k]
|
|
for i, j in product(range(f[0]), range(f[1])):
|
|
for min_size in min_size_array:
|
|
s_kx = min_size / image_size
|
|
s_ky = min_size / image_size
|
|
dense_cx = [x * steps[k] / image_size for x in [j + 0.5]]
|
|
dense_cy = [y * steps[k] / image_size for y in [i + 0.5]]
|
|
for cy, cx in product(dense_cy, dense_cx):
|
|
self.anchors += [cx, cy, s_kx, s_ky]
|
|
|
|
|
|
image = image.permute(1,2,0)
|
|
|
|
|
|
mean = torch.tensor([104, 117, 123], dtype=torch.float32, device='cuda')
|
|
image = torch.sub(image, mean)
|
|
|
|
|
|
|
|
image = image.permute(2,0,1)
|
|
image = torch.reshape(image, (1, 3, 512, 512))
|
|
|
|
height, width = (512, 512)
|
|
tmp = [width, height, width, height, width, height, width, height, width, height]
|
|
scale1 = torch.tensor(tmp, dtype=torch.float32, device='cuda')
|
|
|
|
|
|
conf = torch.empty((1,10752,2), dtype=torch.float32, device='cuda').contiguous()
|
|
landmarks = torch.empty((1,10752,10), dtype=torch.float32, device='cuda').contiguous()
|
|
|
|
io_binding = self.resnet50_model.io_binding()
|
|
io_binding.bind_input(name='input', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,3,512,512), buffer_ptr=image.data_ptr())
|
|
io_binding.bind_output(name='conf', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,10752,2), buffer_ptr=conf.data_ptr())
|
|
io_binding.bind_output(name='landmarks', device_type='cuda', device_id=0, element_type=np.float32, shape=(1,10752,10), buffer_ptr=landmarks.data_ptr())
|
|
|
|
|
|
torch.cuda.synchronize('cuda')
|
|
self.resnet50_model.run_with_iobinding(io_binding)
|
|
|
|
|
|
|
|
scores = torch.squeeze(conf)[:, 1]
|
|
|
|
|
|
|
|
|
|
priors = torch.tensor(self.anchors).view(-1, 4)
|
|
priors = priors.to('cuda')
|
|
|
|
|
|
pre = torch.squeeze(landmarks, 0)
|
|
|
|
tmp = (priors[:, :2] + pre[:, :2] * 0.1 * priors[:, 2:], priors[:, :2] + pre[:, 2:4] * 0.1 * priors[:, 2:], priors[:, :2] + pre[:, 4:6] * 0.1 * priors[:, 2:], priors[:, :2] + pre[:, 6:8] * 0.1 * priors[:, 2:], priors[:, :2] + pre[:, 8:10] * 0.1 * priors[:, 2:])
|
|
landmarks = torch.cat(tmp, dim=1)
|
|
|
|
landmarks = torch.mul(landmarks, scale1)
|
|
|
|
landmarks = landmarks.cpu().numpy()
|
|
|
|
|
|
inds = torch.where(scores>score)[0]
|
|
inds = inds.cpu().numpy()
|
|
scores = scores.cpu().numpy()
|
|
|
|
landmarks, scores = landmarks[inds], scores[inds]
|
|
|
|
|
|
order = scores.argsort()[::-1]
|
|
landmarks = landmarks[order][0]
|
|
|
|
return np.array([[landmarks[i], landmarks[i + 1]] for i in range(0,10,2)]) |