|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
from peft import PeftModel, PeftConfig |
|
|
|
import gc |
|
|
|
gc.collect() |
|
|
|
model_name = "MoodChartAI/basicmood" |
|
adapters_name = "" |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
os.system("sudo swapoff -a; swapon -a") |
|
|
|
print(f"Starting to load the model {model_name} into memory") |
|
|
|
m = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
|
|
).to(device='cpu:7') |
|
|
|
print(f"Loading the adapters from {adapters_name}") |
|
m = PeftModel.from_pretrained(m, adapters_name) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B", trust_remote_code=True) |
|
|
|
|
|
|
|
while True: |
|
mood_input = input("Mood: ") |
|
|
|
inputs = tokenizer("Prompt: %s Completions: You're feeling"%mood_input, return_tensors="pt", return_attention_mask=True) |
|
inputs.to(device='cpu:8') |
|
outputs = m.generate(**inputs, max_length=12) |
|
|
|
print(tokenizer.batch_decode(outputs)[0]) |
|
|
|
|
|
|
|
|
|
|