File size: 20,726 Bytes
29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a 59f4894 29fb37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
---
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
inference: false
language:
- fr
- it
- de
- es
- en
license: apache-2.0
model_creator: Mistral AI_
model_name: Mixtral 8X7B Instruct v0.1
model_type: mixtral
prompt_template: '[INST] {prompt} [/INST]
'
quantized_by: TheBloke
widget:
- output:
text: 'Arr, shiver me timbers! Ye have a llama on yer lawn, ye say? Well, that
be a new one for me! Here''s what I''d suggest, arr:
1. Firstly, ensure yer safety. Llamas may look gentle, but they can be protective
if they feel threatened.
2. Try to make the area less appealing to the llama. Remove any food sources
or water that might be attracting it.
3. Contact local animal control or a wildlife rescue organization. They be the
experts and can provide humane ways to remove the llama from yer property.
4. If ye have any experience with animals, you could try to gently herd the
llama towards a nearby field or open space. But be careful, arr!
Remember, arr, it be important to treat the llama with respect and care. It
be a creature just trying to survive, like the rest of us.'
text: '[INST] You are a pirate chatbot who always responds with Arr and pirate speak!
There''s a llama on my lawn, how can I get rid of him? [/INST]'
---
<!-- markdownlint-disable MD041 -->
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/FwAVVu7eJ4">Chat & support: jartine's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">jartine's LLM work is generously supported by a grant from <a href="https://mozilla.org">mozilla</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Mixtral 8X7B Instruct v0.1 - llamafile
- Model creator: [Mistral AI_](https://huggingface.co/mistralai)
- Original model: [Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
<!-- description start -->
## Description
This repo contains llamafile format model files for [Mistral AI_'s Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).
WARNING: This README may contain inaccuracies. It was generated automatically by forking <a href=/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF>TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF</a> and piping the README through sed. Errors should be reported to jartine, and do not reflect TheBloke. You can also support his work on [Patreon](https://www.patreon.com/TheBlokeAI).
<!-- README_llamafile.md-about-llamafile start -->
### About llamafile
llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023. It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp binaries that run on the stock installs of six OSes for both ARM64 and AMD64.
### Mixtral llamafile
Support for Mixtral was merged into Llama.cpp on December 13th.
These Mixtral llamafiles are known to work in:
* llama.cpp as of December 13th
* KoboldCpp 1.52 as later
* LM Studio 0.2.9 and later
* llama-cpp-python 0.2.23 and later
Other clients/libraries, not listed above, may not yet work.
<!-- README_llamafile.md-about-llamafile end -->
<!-- repositories-available start -->
## Repositories available
* [AWQ model(s) for GPU inference.](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit llamafile models for CPU+GPU inference](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-llamafile)
* [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
<!-- repositories-available end -->
<!-- prompt-template start -->
## Prompt template: Mistral
```
[INST] {prompt} [/INST]
```
<!-- prompt-template end -->
<!-- compatibility_llamafile start -->
## Compatibility
These Mixtral llamafiles are compatible with llama.cpp from December 13th onwards. Other clients/libraries may not work yet.
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_llamafile end -->
<!-- README_llamafile.md-provided-files start -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [mixtral-8x7b-instruct-v0.1.Q2_K.llamafile](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-llamafile/blob/main/mixtral-8x7b-instruct-v0.1.Q2_K.llamafile) | Q2_K | 2 | 15.64 GB| 18.14 GB | smallest, significant quality loss - not recommended for most purposes |
| [mixtral-8x7b-instruct-v0.1.Q3_K_M.llamafile](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-llamafile/blob/main/mixtral-8x7b-instruct-v0.1.Q3_K_M.llamafile) | Q3_K_M | 3 | 20.36 GB| 22.86 GB | very small, high quality loss |
| [mixtral-8x7b-instruct-v0.1.Q4_0.llamafile](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-llamafile/blob/main/mixtral-8x7b-instruct-v0.1.Q4_0.llamafile) | Q4_0 | 4 | 26.44 GB| 28.94 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [mixtral-8x7b-instruct-v0.1.Q4_K_M.llamafile](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-llamafile/blob/main/mixtral-8x7b-instruct-v0.1.Q4_K_M.llamafile) | Q4_K_M | 4 | 26.44 GB| 28.94 GB | medium, balanced quality - recommended |
| [mixtral-8x7b-instruct-v0.1.Q5_0.llamafile](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-llamafile/blob/main/mixtral-8x7b-instruct-v0.1.Q5_0.llamafile) | Q5_0 | 5 | 32.23 GB| 34.73 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [mixtral-8x7b-instruct-v0.1.Q5_K_M.llamafile](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-llamafile/blob/main/mixtral-8x7b-instruct-v0.1.Q5_K_M.llamafile) | Q5_K_M | 5 | 32.23 GB| 34.73 GB | large, very low quality loss - recommended |
| [mixtral-8x7b-instruct-v0.1.Q6_K.llamafile](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-llamafile/blob/main/mixtral-8x7b-instruct-v0.1.Q6_K.llamafile) | Q6_K | 6 | 38.38 GB| 40.88 GB | very large, extremely low quality loss |
| [mixtral-8x7b-instruct-v0.1.Q8_0.llamafile](https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-llamafile/blob/main/mixtral-8x7b-instruct-v0.1.Q8_0.llamafile) | Q8_0 | 8 | 49.62 GB| 52.12 GB | very large, extremely low quality loss - not recommended |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
<!-- README_llamafile.md-provided-files end -->
<!-- README_llamafile.md-how-to-download start -->
## How to download llamafile files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: jartine/Mixtral-8x7B-Instruct-v0.1-llamafile and below it, a specific filename to download, such as: mixtral-8x7b-instruct-v0.1.Q4_K_M.llamafile.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download jartine/Mixtral-8x7B-Instruct-v0.1-llamafile mixtral-8x7b-instruct-v0.1.Q4_K_M.llamafile --local-dir . --local-dir-use-symlinks False
```
<details>
<summary>More advanced huggingface-cli download usage (click to read)</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download jartine/Mixtral-8x7B-Instruct-v0.1-llamafile --local-dir . --local-dir-use-symlinks False --include='*Q4_K*llamafile'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download jartine/Mixtral-8x7B-Instruct-v0.1-llamafile mixtral-8x7b-instruct-v0.1.Q4_K_M.llamafile --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
<!-- README_llamafile.md-how-to-download end -->
<!-- README_llamafile.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 35 -m mixtral-8x7b-instruct-v0.1.Q4_K_M.llamafile --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "[INST] {prompt} [/INST]"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the llamafile file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Note that text-generation-webui may not yet be compatible with Mixtral llamafiles. Please check compatibility first.
Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
## How to run from Python code
You can use llamafile models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) version 0.2.23 and later.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python
```
#### Simple llama-cpp-python example code
```python
from llama_cpp import Llama
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
model_path="./mixtral-8x7b-instruct-v0.1.Q4_K_M.llamafile", # Download the model file first
n_ctx=2048, # The max sequence length to use - note that longer sequence lengths require much more resources
n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
)
# Simple inference example
output = llm(
"[INST] {prompt} [/INST]", # Prompt
max_tokens=512, # Generate up to 512 tokens
stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
echo=True # Whether to echo the prompt
)
# Chat Completion API
llm = Llama(model_path="./mixtral-8x7b-instruct-v0.1.Q4_K_M.llamafile", chat_format="llama-2") # Set chat_format according to the model you are using
llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are a story writing assistant."},
{
"role": "user",
"content": "Write a story about llamas."
}
]
)
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
<!-- README_llamafile.md-how-to-run end -->
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[jartine AI's Discord server](https://discord.gg/FwAVVu7eJ4)
## Thanks, and how to contribute
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
And thank you again to mozilla for their generous grant.
<!-- footer end -->
<!-- original-model-card start -->
# Original model card: Mistral AI_'s Mixtral 8X7B Instruct v0.1
# Model Card for Mixtral-8x7B
The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested.
For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).
## Warning
This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.
## Instruction format
This format must be strictly respected, otherwise the model will generate sub-optimal outputs.
The template used to build a prompt for the Instruct model is defined as follows:
```
<s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
```
Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings.
As reference, here is the pseudo-code used to tokenize instructions during fine-tuning:
```python
def tokenize(text):
return tok.encode(text, add_special_tokens=False)
[BOS_ID] +
tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") +
tokenize(BOT_MESSAGE_1) + [EOS_ID] +
…
tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") +
tokenize(BOT_MESSAGE_N) + [EOS_ID]
```
In the pseudo-code above, note that the `tokenize` method should not add a BOS or EOS token automatically, but should add a prefix space.
## Run the model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = "Hello my name is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:
### In half-precision
Note `float16` precision only works on GPU devices
<details>
<summary> Click to expand </summary>
```diff
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0)
text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>
### Lower precision using (8-bit & 4-bit) using `bitsandbytes`
<details>
<summary> Click to expand </summary>
```diff
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
+ model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>
### Load the model with Flash Attention 2
<details>
<summary> Click to expand </summary>
```diff
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
+ model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True)
text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>
## Limitations
The Mixtral-8x7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
# The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
<!-- original-model-card end -->
|