File size: 13,763 Bytes
a92633c 9f3578f a92633c 5c09627 a92633c de1686b a92633c ade73f1 deada0d 47a64ba deada0d 7a5f8e0 ade73f1 a92633c 25e781a a92633c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
---
quantized_by: jartine
model_creator: ibm-granite
pipeline_tag: text-generation
base_model: ibm-granite/granite-34b-code-base
inference: true
license: apache-2.0
datasets:
- bigcode/commitpackft
- TIGER-Lab/MathInstruct
- meta-math/MetaMathQA
- glaiveai/glaive-code-assistant-v3
- glaive-function-calling-v2
- bugdaryan/sql-create-context-instruction
- garage-bAInd/Open-Platypus
- nvidia/HelpSteer
metrics:
- code_eval
library_name: transformers
tags:
- code
- granite
model-index:
- name: granite-34b-code-instruct
results:
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Python)
metrics:
- name: pass@1
type: pass@1
value: 62.2
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 56.7
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Java)
metrics:
- name: pass@1
type: pass@1
value: 62.8
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Go)
metrics:
- name: pass@1
type: pass@1
value: 47.6
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(C++)
metrics:
- name: pass@1
type: pass@1
value: 57.9
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesis(Rust)
metrics:
- name: pass@1
type: pass@1
value: 41.5
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Python)
metrics:
- name: pass@1
type: pass@1
value: 53.0
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 45.1
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Java)
metrics:
- name: pass@1
type: pass@1
value: 50.6
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Go)
metrics:
- name: pass@1
type: pass@1
value: 36.0
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(C++)
metrics:
- name: pass@1
type: pass@1
value: 42.7
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain(Rust)
metrics:
- name: pass@1
type: pass@1
value: 23.8
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Python)
metrics:
- name: pass@1
type: pass@1
value: 54.9
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 47.6
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Java)
metrics:
- name: pass@1
type: pass@1
value: 55.5
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Go)
metrics:
- name: pass@1
type: pass@1
value: 51.2
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(C++)
metrics:
- name: pass@1
type: pass@1
value: 47.0
veriefied: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix(Rust)
metrics:
- name: pass@1
type: pass@1
value: 45.1
veriefied: false
---
# Granite 34B Code Instruct - llamafile
This repository contains executable weights (which we call
[llamafiles](https://github.com/Mozilla-Ocho/llamafile)) that run on
Linux, MacOS, Windows, FreeBSD, OpenBSD, and NetBSD for AMD64 and ARM64.
- Model creator: [IBM](https://hf.co/ibm-granite)
- Original model: [ibm-granite/granite-34b-code-instruct](https://huggingface.co/ibm-granite/granite-34b-code-instruct)
- Base model: [ibm-granite/granite-34b-code-base](https://huggingface.co/ibm-granite/granite-34b-code-base)
Granite 34B is a coding model released by IBM in April of 2024.
## Quickstart
Assuming your system has at least 64GB of RAM, you can try running the
following command which download, concatenate, and execute the model.
```
wget https://huggingface.co/jartine/granite-34b-code-instruct-llamafile/resolve/main/granite-34b-code-instruct.Q5_0.llamafile
chmod +x granite-34b-code-instruct.Q5_0.llamafile
./granite-34b-code-instruct.Q5_0.llamafile --help # view manual
./granite-34b-code-instruct.Q5_0.llamafile # launch web gui + oai api
./granite-34b-code-instruct.Q5_0.llamafile -p ... # cli interface (scriptable)
```
Alternatively, you may download an official `llamafile` executable from
Mozilla Ocho on GitHub, in which case you can use the Granite llamafiles
as a simple weights data file.
```
llamafile -m granite-34b-code-instruct.Q5_0.llamafile ...
```
For further information, please see the [llamafile
README](https://github.com/mozilla-ocho/llamafile/).
Having **trouble?** See the ["Gotchas"
section](https://github.com/mozilla-ocho/llamafile/?tab=readme-ov-file#gotchas)
of the README.
## Prompting
The chat template is stored in the GGUF files. From the CLI interface,
Mistral style prompts seem to work with this model too:
```
[INST] {{prompt}} [/INST]
```
Command template:
```
./granite-34b-code-instruct.Q5_0.llamafile -p "[INST]{{prompt}}[/INST]"
```
The maximum context size of this model is 8192 tokens. These llamafiles
use a default context size of 512 tokens. Whenever you need the maximum
context size to be available with llamafile for any given model, you can
pass the `-c 0` flag. The default temperature for these llamafiles is 0.
It can be changed, e.g. `--temp 0.8`.
## Benchmarks
| hardware | model\_filename | size | test | t/s |
| :----------------------------------------- | :--------------------------------------- | ---------: | ------------: | --------------: |
| Apple M2 Ultra (60-core Metal GPU) | granite-34b-code-instruct.Q5\_0 | 22.03 GiB | pp512 | 159.02 |
| Apple M2 Ultra (60-core Metal GPU) | granite-34b-code-instruct.Q5\_0 | 22.03 GiB | tg16 | 15.39 |
| Apple M2 Ultra (60-core Metal GPU) | granite-34b-code-instruct.Q8\_0 | 33.82 GiB | pp512 | 186.14 |
| Apple M2 Ultra (60-core Metal GPU) | granite-34b-code-instruct.Q8\_0 | 33.82 GiB | tg16 | 14.13 |
| AMD Ryzen Threadripper PRO 7995WX (znver4) | granite-34b-code-instruct.Q5\_0 | 22.03 GiB | pp512 | 95.08 |
| AMD Ryzen Threadripper PRO 7995WX (znver4) | granite-34b-code-instruct.Q5\_0 | 22.03 GiB | tg16 | 7.78 |
| AMD Ryzen Threadripper PRO 7995WX (znver4) | granite-34b-code-instruct.Q8\_0 | 33.82 GiB | pp512 | 94.34 |
| AMD Ryzen Threadripper PRO 7995WX (znver4) | granite-34b-code-instruct.Q8\_0 | 33.82 GiB | tg16 | 5.61 |
## About Quantization
Our own evaluation of this model leads us to believe that it works best
with the `Q5_0` and `Q8_0` quants. We tried other quantization formats
such as `Q6_K` but it didn't seem to be a good of a fit for this model.
## About llamafile
llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023.
It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp
binaries that run on the stock installs of six OSes for both ARM64 and
AMD64.
In addition to being executables, llamafiles are also zip archives. Each
llamafile contains a GGUF file, which you can extract using the `unzip`
command. If you want to change or add files to your llamafiles, then the
`zipalign` command (distributed on the llamafile github) should be used
instead of the traditional `zip` command.
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png)
# Granite-34B-Code-Instruct
## Model Summary
**Granite-34B-Code-Instruct** is a 34B parameter model fine tuned from *Granite-34B-Code-Base* on a combination of **permissively licensed** instruction data to enhance instruction following capabilities including logical reasoning and problem-solving skills.
- **Developers:** IBM Research
- **GitHub Repository:** [ibm-granite/granite-code-models](https://github.com/ibm-granite/granite-code-models)
- **Paper:** [Granite Code Models: A Family of Open Foundation Models for Code Intelligence](https://arxiv.org/abs/2405.04324)
- **Release Date**: May 6th, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
## Usage
### Intended use
The model is designed to respond to coding related instructions and can be used to build coding assistants.
<!-- TO DO: Check starcoder2 instruct code example that includes the template https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1 -->
### Generation
This is a simple example of how to use **Granite-34B-Code-Instruct** model.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
model_path = "ibm-granite/granite-34b-code-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
chat = [
{ "role": "user", "content": "Write a code to find the maximum value in a list of numbers." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# tokenize the text
input_tokens = tokenizer(chat, return_tensors="pt")
# transfer tokenized inputs to the device
for i in input_tokens:
input_tokens[i] = input_tokens[i].to(device)
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
```
<!-- TO DO: Check this part -->
## Training Data
Granite Code Instruct models are trained on the following types of data.
* Code Commits Datasets: we sourced code commits data from the [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft) dataset, a filtered version of the full CommitPack dataset. From CommitPackFT dataset, we only consider data for 92 programming languages. Our inclusion criteria boils down to selecting programming languages common across CommitPackFT and the 116 languages that we considered to pretrain the code-base model (*Granite-34B-Code-Base*).
* Math Datasets: We consider two high-quality math datasets, [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) and [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA). Due to license issues, we filtered out GSM8K-RFT and Camel-Math from MathInstruct dataset.
* Code Instruction Datasets: We use [Glaive-Code-Assistant-v3](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3), [Glaive-Function-Calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2), [NL2SQL11](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction) and a small collection of synthetic API calling datasets.
* Language Instruction Datasets: We include high-quality datasets such as [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) and an open license-filtered version of [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). We also include a collection of hardcoded prompts to ensure our model generates correct outputs given inquiries about its name or developers.
## Infrastructure
We train the Granite Code models using two of IBM's super computing clusters, namely Vela and Blue Vela, both outfitted with NVIDIA A100 and H100 GPUs respectively. These clusters provide a scalable and efficient infrastructure for training our models over thousands of GPUs.
## Ethical Considerations and Limitations
Granite code instruct models are primarily finetuned using instruction-response pairs across a specific set of programming languages. Thus, their performance may be limited with out-of-domain programming languages. In this situation, it is beneficial providing few-shot examples to steer the model's output. Moreover, developers should perform safety testing and target-specific tuning before deploying these models on critical applications. The model also inherits ethical considerations and limitations from its base model. For more information, please refer to *[Granite-34B-Code-Base](https://huggingface.co/ibm-granite/granite-34b-code-base)* model card.
|