a2c-PandaReachDense-v3 / config.json
Mtc2's picture
Initial commit
12c22af
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a7d7fcd1240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a7d7fcdabc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691865069625097553, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMEiLPzkTnb9Xy6w/hTWEPtZSd7sKA+w+hTWEPtZSd7sKA+w+hTWEPtZSd7sKA+w+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4pOMPzfQt79f5Wk/MMB5Peuzo7/WI44/yApKvynQNz8BzK8+wUK2P6YcF79rMZ8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAwSIs/OROdv1fLrD98G4s/Bm12v22Ztz+FNYQ+1lJ3uwoD7D55VPY+zPlQuWPCwj6FNYQ+1lJ3uwoD7D55VPY+zPlQuWPCwj6FNYQ+1lJ3uwoD7D55VPY+zPlQuWPCwj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.0881405 -1.2271491 1.3499554 ]\n [ 0.25822082 -0.00377386 0.4609607 ]\n [ 0.25822082 -0.00377386 0.4609607 ]\n [ 0.25822082 -0.00377386 0.4609607 ]]", "desired_goal": "[[ 1.098263 -1.4360417 0.9136562]\n [ 0.0609743 -1.2789282 1.1104686]\n [-0.789227 0.71802 0.3433533]\n [ 1.4239122 -0.5902809 0.3109239]]", "observation": "[[ 1.0881405e+00 -1.2271491e+00 1.3499554e+00 1.0867763e+00\n -9.6260107e-01 1.4343697e+00]\n [ 2.5822082e-01 -3.7738583e-03 4.6096069e-01 4.8111323e-01\n -1.9929482e-04 3.8038930e-01]\n [ 2.5822082e-01 -3.7738583e-03 4.6096069e-01 4.8111323e-01\n -1.9929482e-04 3.8038930e-01]\n [ 2.5822082e-01 -3.7738583e-03 4.6096069e-01 4.8111323e-01\n -1.9929482e-04 3.8038930e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAP6v4vB7d5b15Rdk9SUXFveh/Dj5gkpI+ZlPRvW1y0T0UgJY+y3AhveHmtrveNbw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03035509 -0.11223815 0.10608954]\n [-0.09632356 0.1391598 0.286273 ]\n [-0.10220985 0.10226903 0.2939459 ]\n [-0.03941421 -0.00558172 0.09189962]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9HsF+uvECOMAWyUSwOMAXSUR0CmRww6ySmqdX2UKGgGR7/CIMz/IbOvaAdLAmgIR0CmR1F90A93dX2UKGgGR7/NtTkyULUkaAdLA2gIR0CmR9NH6MzedX2UKGgGR7/W2VE/jbSJaAdLBGgIR0CmR5YffXPJdX2UKGgGR7+gkTpPhybQaAdLAWgIR0CmR1mfGuLadX2UKGgGR7/Vi+cpb2UTaAdLBGgIR0CmRyMir1dxdX2UKGgGR7/A2YOUdJaraAdLAmgIR0CmR2Net0V8dX2UKGgGR7/Ta/h2nsLOaAdLA2gIR0CmR+LWRRuTdX2UKGgGR7/BIPsiSq2jaAdLAmgIR0CmRyzFl05mdX2UKGgGR7/VGFBY3eenaAdLBGgIR0CmR6ozFdcCdX2UKGgGR7++rn1WbPQfaAdLAmgIR0CmR7hXr+o+dX2UKGgGR7/b3c580DU3aAdLBGgIR0CmR3vy9VWCdX2UKGgGR7/YreqJdjXnaAdLBGgIR0CmR/w1BMSLdX2UKGgGR7/YowEhaC+UaAdLBGgIR0CmR0ZQHiWFdX2UKGgGR7+g+KTB68g7aAdLAWgIR0CmSAGorFwUdX2UKGgGR7/AsOoYNy5qaAdLAmgIR0CmR4chkiD/dX2UKGgGR7/KFotcv/R3aAdLA2gIR0CmR8j3Ehq1dX2UKGgGR7/AieNDMNc4aAdLAmgIR0CmSA4SQHRkdX2UKGgGR7+pDgIhQm/naAdLAWgIR0CmR9CWmgrZdX2UKGgGR7/JsniNsFdLaAdLA2gIR0CmR1hmGucMdX2UKGgGR7/NwBo24uscaAdLA2gIR0CmSBxqGlANdX2UKGgGR7/KqVhTfixWaAdLA2gIR0CmR99Aood/dX2UKGgGR7/Tv/BFd9lVaAdLA2gIR0CmR2dH2AXmdX2UKGgGR7/ZaZhKDkELaAdLBmgIR0CmR6eXqqwRdX2UKGgGR7+3oEB8x9G7aAdLAmgIR0CmR+uyE+PjdX2UKGgGR7/RmdAgPmPpaAdLA2gIR0CmSDBWHUMHdX2UKGgGR7/Bp/wy6+WXaAdLAmgIR0CmR/n8sMAndX2UKGgGR7/J9deIEbHZaAdLA2gIR0CmR710cOsldX2UKGgGR7/YuOCGvfTDaAdLBGgIR0CmR4H/cWTHdX2UKGgGR7/AVopQUHpsaAdLAmgIR0CmSDzk6tDEdX2UKGgGR7/O9xp+MIeHaAdLA2gIR0CmSAuDSPU8dX2UKGgGR7/P+8XenAIqaAdLA2gIR0CmR87PQfITdX2UKGgGR7/TUCJXQtz0aAdLA2gIR0CmR5PMKTjedX2UKGgGR7/Qo371qWTpaAdLA2gIR0CmSE7UPQOXdX2UKGgGR7/TeRgZ0jkdaAdLA2gIR0CmSBzb349HdX2UKGgGR7/QJ5mh/RVqaAdLA2gIR0CmR+BOP/70dX2UKGgGR7/JyXlbNbC8aAdLA2gIR0CmR6V1Oj7AdX2UKGgGR7/PDeCTUy57aAdLA2gIR0CmSGEK/mDEdX2UKGgGR7/KEhaC+UQkaAdLA2gIR0CmSC+3x4IKdX2UKGgGR7/GyyD7IkquaAdLA2gIR0CmR/M6q815dX2UKGgGR7/QfNRm9QGfaAdLA2gIR0CmR7hE8aGYdX2UKGgGR7/N0U47zTWoaAdLA2gIR0CmSHNsFdLQdX2UKGgGR7/A/ATIvJzUaAdLAmgIR0CmR8HrpqyodX2UKGgGR7+3F2mpEQXiaAdLAmgIR0CmSHzZpSJkdX2UKGgGR7/S5rgwXZXdaAdLA2gIR0CmSD+OwPiDdX2UKGgGR7+a8cuJ1q33aAdLAWgIR0CmSITOgQHzdX2UKGgGR7/cZVGTcIqtaAdLBGgIR0CmSAqkl/pddX2UKGgGR7/BWPtD2JzlaAdLAmgIR0CmR89U83dcdX2UKGgGR7+VaB7NSqEOaAdLAWgIR0CmSBBGhEjPdX2UKGgGR7+9anrIHTqjaAdLAmgIR0CmSI+xW1c/dX2UKGgGR7/TRfnfVI7OaAdLA2gIR0CmSFJfpljFdX2UKGgGR7/UCbtqpLmIaAdLA2gIR0CmR99pyp71dX2UKGgGR7+5qh11W8yvaAdLAmgIR0CmSJqG+K0ldX2UKGgGR7/DGH58BuGcaAdLAmgIR0CmSF0JfICEdX2UKGgGR7+gjfNzKcNIaAdLAWgIR0CmR+T37DVIdX2UKGgGR7+oVEd/8VHnaAdLAWgIR0CmSGXMQmNSdX2UKGgGR7/W/RVp9JBgaAdLBWgIR0CmSC4wRGtqdX2UKGgGR7++2uxKQJXyaAdLAmgIR0CmSG/mT1TSdX2UKGgGR7/JfpljEvTPaAdLA2gIR0CmR/ejEehgdX2UKGgGR7/cs1KoQ4CIaAdLBGgIR0CmSLMkhRqHdX2UKGgGR7++8kD6nBLxaAdLAmgIR0CmSDj7Q9iddX2UKGgGR7+zY4ACGN70aAdLAmgIR0CmSAJ0GNaRdX2UKGgGR7/R98JD3M6jaAdLA2gIR0CmSIKwQlKLdX2UKGgGR7/XKKYRdyDJaAdLA2gIR0CmSMTgMtsfdX2UKGgGR7/NtiQT238XaAdLA2gIR0CmSEqZ2IO6dX2UKGgGR7+2RvFWGRFJaAdLAmgIR0CmSA80+C9RdX2UKGgGR7/UkKNQ0oBraAdLA2gIR0CmSJCR4hUzdX2UKGgGR7/U2TgVGkN4aAdLA2gIR0CmSNM052hadX2UKGgGR7/JaQmu1WsBaAdLA2gIR0CmSFjcEeQudX2UKGgGR7/T2uPmxMWXaAdLA2gIR0CmSB3Sa3I/dX2UKGgGR7+3iOvMbFS9aAdLAmgIR0CmSN+z+m3wdX2UKGgGR7/BK0UoKD02aAdLAmgIR0CmSCn003wTdX2UKGgGR7/LiZv1lGwzaAdLA2gIR0CmSGsCT2WZdX2UKGgGR7/CCuEEkjX4aAdLAmgIR0CmSDQW3z+WdX2UKGgGR7/NUwSJ0nw5aAdLA2gIR0CmSO72Dg62dX2UKGgGR7/gQ1aW5YozaAdLB2gIR0CmSLjUmUnpdX2UKGgGR7/UO/cnE2pAaAdLA2gIR0CmSHxFiKBNdX2UKGgGR7+0AxSHdoFnaAdLAmgIR0CmSEDGtITXdX2UKGgGR7/U/yGzru6VaAdLA2gIR0CmSP/rjYI0dX2UKGgGR7/WWUKRdQfqaAdLA2gIR0CmSMcsUZeidX2UKGgGR7/IpMpPRAryaAdLA2gIR0CmSIqISDh+dX2UKGgGR7/OmTkhib2EaAdLA2gIR0CmSE8gQpWndX2UKGgGR7++E/SpiqhlaAdLAmgIR0CmSNNUOuq4dX2UKGgGR7/BXCCSRr8BaAdLAmgIR0CmSJaqjrRjdX2UKGgGR7/ZAYYR/ViGaAdLBGgIR0CmSRZFocrBdX2UKGgGR7/PKFqSHM2WaAdLA2gIR0CmSGCGFi8WdX2UKGgGR7+pF1B+nZTRaAdLAWgIR0CmSRtDUmUodX2UKGgGR7/CEV32VVxTaAdLAmgIR0CmSKEc81XOdX2UKGgGR7/Ne2NNrTH9aAdLA2gIR0CmSOK94/u9dX2UKGgGR7/JOKwY+B6KaAdLA2gIR0CmSG7Hp8nedX2UKGgGR7/PhF3IMjNZaAdLA2gIR0CmSSwb2lEadX2UKGgGR7+6VW0Z3s5XaAdLAmgIR0CmSO6cI7eVdX2UKGgGR7/K4YJmdy1eaAdLA2gIR0CmSLHezlcRdX2UKGgGR7+0RSP2f02+aAdLAmgIR0CmSHrpqynldX2UKGgGR7/CwGnn+yZ8aAdLAmgIR0CmSTWtdRixdX2UKGgGR7+/7oB7u2JBaAdLAmgIR0CmSPge7tiQdX2UKGgGR7/Nr6ciGFi8aAdLA2gIR0CmSMA/cFhYdX2UKGgGR7+98Sf16E8JaAdLAmgIR0CmSQHAymALdX2UKGgGR7+kfcN6PbPAaAdLAWgIR0CmSMUWl/H6dX2UKGgGR7/NLDAJswcpaAdLA2gIR0CmSImvwEyMdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}