Muennighoff commited on
Commit
ee2f697
1 Parent(s): 54862a5

Update MTEB meta

Browse files
Files changed (1) hide show
  1. README.md +434 -0
README.md CHANGED
@@ -13,6 +13,8 @@ model-index:
13
  dataset:
14
  type: mteb/amazon_counterfactual
15
  name: MTEB AmazonCounterfactualClassification (en)
 
 
16
  metrics:
17
  - type: accuracy
18
  value: 65.88059701492537
@@ -25,6 +27,8 @@ model-index:
25
  dataset:
26
  type: mteb/amazon_counterfactual
27
  name: MTEB AmazonCounterfactualClassification (de)
 
 
28
  metrics:
29
  - type: accuracy
30
  value: 59.07922912205568
@@ -37,6 +41,8 @@ model-index:
37
  dataset:
38
  type: mteb/amazon_counterfactual
39
  name: MTEB AmazonCounterfactualClassification (en-ext)
 
 
40
  metrics:
41
  - type: accuracy
42
  value: 64.91754122938531
@@ -49,6 +55,8 @@ model-index:
49
  dataset:
50
  type: mteb/amazon_counterfactual
51
  name: MTEB AmazonCounterfactualClassification (ja)
 
 
52
  metrics:
53
  - type: accuracy
54
  value: 56.423982869378996
@@ -61,6 +69,8 @@ model-index:
61
  dataset:
62
  type: mteb/amazon_polarity
63
  name: MTEB AmazonPolarityClassification
 
 
64
  metrics:
65
  - type: accuracy
66
  value: 74.938225
@@ -73,6 +83,8 @@ model-index:
73
  dataset:
74
  type: mteb/amazon_reviews_multi
75
  name: MTEB AmazonReviewsClassification (en)
 
 
76
  metrics:
77
  - type: accuracy
78
  value: 35.098
@@ -83,6 +95,8 @@ model-index:
83
  dataset:
84
  type: mteb/amazon_reviews_multi
85
  name: MTEB AmazonReviewsClassification (de)
 
 
86
  metrics:
87
  - type: accuracy
88
  value: 24.516
@@ -93,6 +107,8 @@ model-index:
93
  dataset:
94
  type: mteb/amazon_reviews_multi
95
  name: MTEB AmazonReviewsClassification (es)
 
 
96
  metrics:
97
  - type: accuracy
98
  value: 29.097999999999995
@@ -103,6 +119,8 @@ model-index:
103
  dataset:
104
  type: mteb/amazon_reviews_multi
105
  name: MTEB AmazonReviewsClassification (fr)
 
 
106
  metrics:
107
  - type: accuracy
108
  value: 27.395999999999997
@@ -113,6 +131,8 @@ model-index:
113
  dataset:
114
  type: mteb/amazon_reviews_multi
115
  name: MTEB AmazonReviewsClassification (ja)
 
 
116
  metrics:
117
  - type: accuracy
118
  value: 21.724
@@ -123,6 +143,8 @@ model-index:
123
  dataset:
124
  type: mteb/amazon_reviews_multi
125
  name: MTEB AmazonReviewsClassification (zh)
 
 
126
  metrics:
127
  - type: accuracy
128
  value: 23.976
@@ -133,6 +155,8 @@ model-index:
133
  dataset:
134
  type: arguana
135
  name: MTEB ArguAna
 
 
136
  metrics:
137
  - type: map_at_1
138
  value: 13.442000000000002
@@ -187,6 +211,8 @@ model-index:
187
  dataset:
188
  type: mteb/arxiv-clustering-p2p
189
  name: MTEB ArxivClusteringP2P
 
 
190
  metrics:
191
  - type: v_measure
192
  value: 34.742482477870766
@@ -195,6 +221,8 @@ model-index:
195
  dataset:
196
  type: mteb/arxiv-clustering-s2s
197
  name: MTEB ArxivClusteringS2S
 
 
198
  metrics:
199
  - type: v_measure
200
  value: 24.67870651472156
@@ -203,6 +231,8 @@ model-index:
203
  dataset:
204
  type: mteb/askubuntudupquestions-reranking
205
  name: MTEB AskUbuntuDupQuestions
 
 
206
  metrics:
207
  - type: map
208
  value: 52.63439984994702
@@ -213,6 +243,8 @@ model-index:
213
  dataset:
214
  type: mteb/biosses-sts
215
  name: MTEB BIOSSES
 
 
216
  metrics:
217
  - type: cos_sim_pearson
218
  value: 72.78000135012542
@@ -231,6 +263,8 @@ model-index:
231
  dataset:
232
  type: mteb/bucc-bitext-mining
233
  name: MTEB BUCC (de-en)
 
 
234
  metrics:
235
  - type: accuracy
236
  value: 1.0960334029227559
@@ -245,6 +279,8 @@ model-index:
245
  dataset:
246
  type: mteb/bucc-bitext-mining
247
  name: MTEB BUCC (fr-en)
 
 
248
  metrics:
249
  - type: accuracy
250
  value: 0.02201188641866608
@@ -259,6 +295,8 @@ model-index:
259
  dataset:
260
  type: mteb/bucc-bitext-mining
261
  name: MTEB BUCC (ru-en)
 
 
262
  metrics:
263
  - type: accuracy
264
  value: 0.0
@@ -273,6 +311,8 @@ model-index:
273
  dataset:
274
  type: mteb/bucc-bitext-mining
275
  name: MTEB BUCC (zh-en)
 
 
276
  metrics:
277
  - type: accuracy
278
  value: 0.0
@@ -287,6 +327,8 @@ model-index:
287
  dataset:
288
  type: mteb/banking77
289
  name: MTEB Banking77Classification
 
 
290
  metrics:
291
  - type: accuracy
292
  value: 74.67857142857142
@@ -297,6 +339,8 @@ model-index:
297
  dataset:
298
  type: mteb/biorxiv-clustering-p2p
299
  name: MTEB BiorxivClusteringP2P
 
 
300
  metrics:
301
  - type: v_measure
302
  value: 28.93427045246491
@@ -305,6 +349,8 @@ model-index:
305
  dataset:
306
  type: mteb/biorxiv-clustering-s2s
307
  name: MTEB BiorxivClusteringS2S
 
 
308
  metrics:
309
  - type: v_measure
310
  value: 23.080939123955474
@@ -313,6 +359,8 @@ model-index:
313
  dataset:
314
  type: BeIR/cqadupstack
315
  name: MTEB CQADupstackAndroidRetrieval
 
 
316
  metrics:
317
  - type: map_at_1
318
  value: 18.221999999999998
@@ -367,6 +415,8 @@ model-index:
367
  dataset:
368
  type: BeIR/cqadupstack
369
  name: MTEB CQADupstackEnglishRetrieval
 
 
370
  metrics:
371
  - type: map_at_1
372
  value: 12.058
@@ -421,6 +471,8 @@ model-index:
421
  dataset:
422
  type: BeIR/cqadupstack
423
  name: MTEB CQADupstackGamingRetrieval
 
 
424
  metrics:
425
  - type: map_at_1
426
  value: 21.183
@@ -475,6 +527,8 @@ model-index:
475
  dataset:
476
  type: BeIR/cqadupstack
477
  name: MTEB CQADupstackGisRetrieval
 
 
478
  metrics:
479
  - type: map_at_1
480
  value: 11.350999999999999
@@ -529,6 +583,8 @@ model-index:
529
  dataset:
530
  type: BeIR/cqadupstack
531
  name: MTEB CQADupstackMathematicaRetrieval
 
 
532
  metrics:
533
  - type: map_at_1
534
  value: 8.08
@@ -583,6 +639,8 @@ model-index:
583
  dataset:
584
  type: BeIR/cqadupstack
585
  name: MTEB CQADupstackPhysicsRetrieval
 
 
586
  metrics:
587
  - type: map_at_1
588
  value: 13.908999999999999
@@ -637,6 +695,8 @@ model-index:
637
  dataset:
638
  type: BeIR/cqadupstack
639
  name: MTEB CQADupstackProgrammersRetrieval
 
 
640
  metrics:
641
  - type: map_at_1
642
  value: 12.598
@@ -691,6 +751,8 @@ model-index:
691
  dataset:
692
  type: BeIR/cqadupstack
693
  name: MTEB CQADupstackRetrieval
 
 
694
  metrics:
695
  - type: map_at_1
696
  value: 12.738416666666666
@@ -745,6 +807,8 @@ model-index:
745
  dataset:
746
  type: BeIR/cqadupstack
747
  name: MTEB CQADupstackStatsRetrieval
 
 
748
  metrics:
749
  - type: map_at_1
750
  value: 12.307
@@ -799,6 +863,8 @@ model-index:
799
  dataset:
800
  type: BeIR/cqadupstack
801
  name: MTEB CQADupstackTexRetrieval
 
 
802
  metrics:
803
  - type: map_at_1
804
  value: 6.496
@@ -853,6 +919,8 @@ model-index:
853
  dataset:
854
  type: BeIR/cqadupstack
855
  name: MTEB CQADupstackUnixRetrieval
 
 
856
  metrics:
857
  - type: map_at_1
858
  value: 13.843
@@ -907,6 +975,8 @@ model-index:
907
  dataset:
908
  type: BeIR/cqadupstack
909
  name: MTEB CQADupstackWebmastersRetrieval
 
 
910
  metrics:
911
  - type: map_at_1
912
  value: 13.757
@@ -961,6 +1031,8 @@ model-index:
961
  dataset:
962
  type: BeIR/cqadupstack
963
  name: MTEB CQADupstackWordpressRetrieval
 
 
964
  metrics:
965
  - type: map_at_1
966
  value: 9.057
@@ -1015,6 +1087,8 @@ model-index:
1015
  dataset:
1016
  type: climate-fever
1017
  name: MTEB ClimateFEVER
 
 
1018
  metrics:
1019
  - type: map_at_1
1020
  value: 3.714
@@ -1069,6 +1143,8 @@ model-index:
1069
  dataset:
1070
  type: dbpedia-entity
1071
  name: MTEB DBPedia
 
 
1072
  metrics:
1073
  - type: map_at_1
1074
  value: 1.764
@@ -1123,6 +1199,8 @@ model-index:
1123
  dataset:
1124
  type: mteb/emotion
1125
  name: MTEB EmotionClassification
 
 
1126
  metrics:
1127
  - type: accuracy
1128
  value: 42.225
@@ -1133,6 +1211,8 @@ model-index:
1133
  dataset:
1134
  type: fever
1135
  name: MTEB FEVER
 
 
1136
  metrics:
1137
  - type: map_at_1
1138
  value: 11.497
@@ -1187,6 +1267,8 @@ model-index:
1187
  dataset:
1188
  type: fiqa
1189
  name: MTEB FiQA2018
 
 
1190
  metrics:
1191
  - type: map_at_1
1192
  value: 3.637
@@ -1241,6 +1323,8 @@ model-index:
1241
  dataset:
1242
  type: hotpotqa
1243
  name: MTEB HotpotQA
 
 
1244
  metrics:
1245
  - type: map_at_1
1246
  value: 9.676
@@ -1295,6 +1379,8 @@ model-index:
1295
  dataset:
1296
  type: mteb/imdb
1297
  name: MTEB ImdbClassification
 
 
1298
  metrics:
1299
  - type: accuracy
1300
  value: 62.895999999999994
@@ -1307,6 +1393,8 @@ model-index:
1307
  dataset:
1308
  type: msmarco
1309
  name: MTEB MSMARCO
 
 
1310
  metrics:
1311
  - type: map_at_1
1312
  value: 2.88
@@ -1361,6 +1449,8 @@ model-index:
1361
  dataset:
1362
  type: mteb/mtop_domain
1363
  name: MTEB MTOPDomainClassification (en)
 
 
1364
  metrics:
1365
  - type: accuracy
1366
  value: 81.51846785225717
@@ -1371,6 +1461,8 @@ model-index:
1371
  dataset:
1372
  type: mteb/mtop_domain
1373
  name: MTEB MTOPDomainClassification (de)
 
 
1374
  metrics:
1375
  - type: accuracy
1376
  value: 60.37475345167653
@@ -1381,6 +1473,8 @@ model-index:
1381
  dataset:
1382
  type: mteb/mtop_domain
1383
  name: MTEB MTOPDomainClassification (es)
 
 
1384
  metrics:
1385
  - type: accuracy
1386
  value: 67.36824549699799
@@ -1391,6 +1485,8 @@ model-index:
1391
  dataset:
1392
  type: mteb/mtop_domain
1393
  name: MTEB MTOPDomainClassification (fr)
 
 
1394
  metrics:
1395
  - type: accuracy
1396
  value: 63.12871907297212
@@ -1401,6 +1497,8 @@ model-index:
1401
  dataset:
1402
  type: mteb/mtop_domain
1403
  name: MTEB MTOPDomainClassification (hi)
 
 
1404
  metrics:
1405
  - type: accuracy
1406
  value: 47.04553603442094
@@ -1411,6 +1509,8 @@ model-index:
1411
  dataset:
1412
  type: mteb/mtop_domain
1413
  name: MTEB MTOPDomainClassification (th)
 
 
1414
  metrics:
1415
  - type: accuracy
1416
  value: 52.282097649186255
@@ -1421,6 +1521,8 @@ model-index:
1421
  dataset:
1422
  type: mteb/mtop_intent
1423
  name: MTEB MTOPIntentClassification (en)
 
 
1424
  metrics:
1425
  - type: accuracy
1426
  value: 58.2421340629275
@@ -1431,6 +1533,8 @@ model-index:
1431
  dataset:
1432
  type: mteb/mtop_intent
1433
  name: MTEB MTOPIntentClassification (de)
 
 
1434
  metrics:
1435
  - type: accuracy
1436
  value: 45.069033530571986
@@ -1441,6 +1545,8 @@ model-index:
1441
  dataset:
1442
  type: mteb/mtop_intent
1443
  name: MTEB MTOPIntentClassification (es)
 
 
1444
  metrics:
1445
  - type: accuracy
1446
  value: 48.80920613742495
@@ -1451,6 +1557,8 @@ model-index:
1451
  dataset:
1452
  type: mteb/mtop_intent
1453
  name: MTEB MTOPIntentClassification (fr)
 
 
1454
  metrics:
1455
  - type: accuracy
1456
  value: 44.337613529595984
@@ -1461,6 +1569,8 @@ model-index:
1461
  dataset:
1462
  type: mteb/mtop_intent
1463
  name: MTEB MTOPIntentClassification (hi)
 
 
1464
  metrics:
1465
  - type: accuracy
1466
  value: 34.198637504481894
@@ -1471,6 +1581,8 @@ model-index:
1471
  dataset:
1472
  type: mteb/mtop_intent
1473
  name: MTEB MTOPIntentClassification (th)
 
 
1474
  metrics:
1475
  - type: accuracy
1476
  value: 43.11030741410488
@@ -1481,6 +1593,8 @@ model-index:
1481
  dataset:
1482
  type: mteb/amazon_massive_intent
1483
  name: MTEB MassiveIntentClassification (af)
 
 
1484
  metrics:
1485
  - type: accuracy
1486
  value: 37.79421654337593
@@ -1491,6 +1605,8 @@ model-index:
1491
  dataset:
1492
  type: mteb/amazon_massive_intent
1493
  name: MTEB MassiveIntentClassification (am)
 
 
1494
  metrics:
1495
  - type: accuracy
1496
  value: 23.722259583053127
@@ -1501,6 +1617,8 @@ model-index:
1501
  dataset:
1502
  type: mteb/amazon_massive_intent
1503
  name: MTEB MassiveIntentClassification (ar)
 
 
1504
  metrics:
1505
  - type: accuracy
1506
  value: 29.64021519838601
@@ -1511,6 +1629,8 @@ model-index:
1511
  dataset:
1512
  type: mteb/amazon_massive_intent
1513
  name: MTEB MassiveIntentClassification (az)
 
 
1514
  metrics:
1515
  - type: accuracy
1516
  value: 39.4754539340955
@@ -1521,6 +1641,8 @@ model-index:
1521
  dataset:
1522
  type: mteb/amazon_massive_intent
1523
  name: MTEB MassiveIntentClassification (bn)
 
 
1524
  metrics:
1525
  - type: accuracy
1526
  value: 26.550100874243444
@@ -1531,6 +1653,8 @@ model-index:
1531
  dataset:
1532
  type: mteb/amazon_massive_intent
1533
  name: MTEB MassiveIntentClassification (cy)
 
 
1534
  metrics:
1535
  - type: accuracy
1536
  value: 38.78278412911904
@@ -1541,6 +1665,8 @@ model-index:
1541
  dataset:
1542
  type: mteb/amazon_massive_intent
1543
  name: MTEB MassiveIntentClassification (da)
 
 
1544
  metrics:
1545
  - type: accuracy
1546
  value: 43.557498318762605
@@ -1551,6 +1677,8 @@ model-index:
1551
  dataset:
1552
  type: mteb/amazon_massive_intent
1553
  name: MTEB MassiveIntentClassification (de)
 
 
1554
  metrics:
1555
  - type: accuracy
1556
  value: 40.39340954942838
@@ -1561,6 +1689,8 @@ model-index:
1561
  dataset:
1562
  type: mteb/amazon_massive_intent
1563
  name: MTEB MassiveIntentClassification (el)
 
 
1564
  metrics:
1565
  - type: accuracy
1566
  value: 37.28648285137861
@@ -1571,6 +1701,8 @@ model-index:
1571
  dataset:
1572
  type: mteb/amazon_massive_intent
1573
  name: MTEB MassiveIntentClassification (en)
 
 
1574
  metrics:
1575
  - type: accuracy
1576
  value: 58.080026899798256
@@ -1581,6 +1713,8 @@ model-index:
1581
  dataset:
1582
  type: mteb/amazon_massive_intent
1583
  name: MTEB MassiveIntentClassification (es)
 
 
1584
  metrics:
1585
  - type: accuracy
1586
  value: 41.176866173503704
@@ -1591,6 +1725,8 @@ model-index:
1591
  dataset:
1592
  type: mteb/amazon_massive_intent
1593
  name: MTEB MassiveIntentClassification (fa)
 
 
1594
  metrics:
1595
  - type: accuracy
1596
  value: 36.422326832548755
@@ -1601,6 +1737,8 @@ model-index:
1601
  dataset:
1602
  type: mteb/amazon_massive_intent
1603
  name: MTEB MassiveIntentClassification (fi)
 
 
1604
  metrics:
1605
  - type: accuracy
1606
  value: 38.75588433086752
@@ -1611,6 +1749,8 @@ model-index:
1611
  dataset:
1612
  type: mteb/amazon_massive_intent
1613
  name: MTEB MassiveIntentClassification (fr)
 
 
1614
  metrics:
1615
  - type: accuracy
1616
  value: 43.67182246133153
@@ -1621,6 +1761,8 @@ model-index:
1621
  dataset:
1622
  type: mteb/amazon_massive_intent
1623
  name: MTEB MassiveIntentClassification (he)
 
 
1624
  metrics:
1625
  - type: accuracy
1626
  value: 31.980497646267658
@@ -1631,6 +1773,8 @@ model-index:
1631
  dataset:
1632
  type: mteb/amazon_massive_intent
1633
  name: MTEB MassiveIntentClassification (hi)
 
 
1634
  metrics:
1635
  - type: accuracy
1636
  value: 28.039677202420982
@@ -1641,6 +1785,8 @@ model-index:
1641
  dataset:
1642
  type: mteb/amazon_massive_intent
1643
  name: MTEB MassiveIntentClassification (hu)
 
 
1644
  metrics:
1645
  - type: accuracy
1646
  value: 38.13718897108272
@@ -1651,6 +1797,8 @@ model-index:
1651
  dataset:
1652
  type: mteb/amazon_massive_intent
1653
  name: MTEB MassiveIntentClassification (hy)
 
 
1654
  metrics:
1655
  - type: accuracy
1656
  value: 26.05245460659045
@@ -1661,6 +1809,8 @@ model-index:
1661
  dataset:
1662
  type: mteb/amazon_massive_intent
1663
  name: MTEB MassiveIntentClassification (id)
 
 
1664
  metrics:
1665
  - type: accuracy
1666
  value: 41.156691324815064
@@ -1671,6 +1821,8 @@ model-index:
1671
  dataset:
1672
  type: mteb/amazon_massive_intent
1673
  name: MTEB MassiveIntentClassification (is)
 
 
1674
  metrics:
1675
  - type: accuracy
1676
  value: 38.62811028917284
@@ -1681,6 +1833,8 @@ model-index:
1681
  dataset:
1682
  type: mteb/amazon_massive_intent
1683
  name: MTEB MassiveIntentClassification (it)
 
 
1684
  metrics:
1685
  - type: accuracy
1686
  value: 44.0383322125084
@@ -1691,6 +1845,8 @@ model-index:
1691
  dataset:
1692
  type: mteb/amazon_massive_intent
1693
  name: MTEB MassiveIntentClassification (ja)
 
 
1694
  metrics:
1695
  - type: accuracy
1696
  value: 46.20712844653666
@@ -1701,6 +1857,8 @@ model-index:
1701
  dataset:
1702
  type: mteb/amazon_massive_intent
1703
  name: MTEB MassiveIntentClassification (jv)
 
 
1704
  metrics:
1705
  - type: accuracy
1706
  value: 37.60591795561533
@@ -1711,6 +1869,8 @@ model-index:
1711
  dataset:
1712
  type: mteb/amazon_massive_intent
1713
  name: MTEB MassiveIntentClassification (ka)
 
 
1714
  metrics:
1715
  - type: accuracy
1716
  value: 24.47209145931405
@@ -1721,6 +1881,8 @@ model-index:
1721
  dataset:
1722
  type: mteb/amazon_massive_intent
1723
  name: MTEB MassiveIntentClassification (km)
 
 
1724
  metrics:
1725
  - type: accuracy
1726
  value: 26.23739071956961
@@ -1731,6 +1893,8 @@ model-index:
1731
  dataset:
1732
  type: mteb/amazon_massive_intent
1733
  name: MTEB MassiveIntentClassification (kn)
 
 
1734
  metrics:
1735
  - type: accuracy
1736
  value: 17.831203765971754
@@ -1741,6 +1905,8 @@ model-index:
1741
  dataset:
1742
  type: mteb/amazon_massive_intent
1743
  name: MTEB MassiveIntentClassification (ko)
 
 
1744
  metrics:
1745
  - type: accuracy
1746
  value: 37.266308002689975
@@ -1751,6 +1917,8 @@ model-index:
1751
  dataset:
1752
  type: mteb/amazon_massive_intent
1753
  name: MTEB MassiveIntentClassification (lv)
 
 
1754
  metrics:
1755
  - type: accuracy
1756
  value: 40.93140551445864
@@ -1761,6 +1929,8 @@ model-index:
1761
  dataset:
1762
  type: mteb/amazon_massive_intent
1763
  name: MTEB MassiveIntentClassification (ml)
 
 
1764
  metrics:
1765
  - type: accuracy
1766
  value: 17.88500336247478
@@ -1771,6 +1941,8 @@ model-index:
1771
  dataset:
1772
  type: mteb/amazon_massive_intent
1773
  name: MTEB MassiveIntentClassification (mn)
 
 
1774
  metrics:
1775
  - type: accuracy
1776
  value: 32.975790181573636
@@ -1781,6 +1953,8 @@ model-index:
1781
  dataset:
1782
  type: mteb/amazon_massive_intent
1783
  name: MTEB MassiveIntentClassification (ms)
 
 
1784
  metrics:
1785
  - type: accuracy
1786
  value: 40.91123066577001
@@ -1791,6 +1965,8 @@ model-index:
1791
  dataset:
1792
  type: mteb/amazon_massive_intent
1793
  name: MTEB MassiveIntentClassification (my)
 
 
1794
  metrics:
1795
  - type: accuracy
1796
  value: 17.834566240753194
@@ -1801,6 +1977,8 @@ model-index:
1801
  dataset:
1802
  type: mteb/amazon_massive_intent
1803
  name: MTEB MassiveIntentClassification (nb)
 
 
1804
  metrics:
1805
  - type: accuracy
1806
  value: 39.47881640887693
@@ -1811,6 +1989,8 @@ model-index:
1811
  dataset:
1812
  type: mteb/amazon_massive_intent
1813
  name: MTEB MassiveIntentClassification (nl)
 
 
1814
  metrics:
1815
  - type: accuracy
1816
  value: 41.76193678547412
@@ -1821,6 +2001,8 @@ model-index:
1821
  dataset:
1822
  type: mteb/amazon_massive_intent
1823
  name: MTEB MassiveIntentClassification (pl)
 
 
1824
  metrics:
1825
  - type: accuracy
1826
  value: 42.61936785474109
@@ -1831,6 +2013,8 @@ model-index:
1831
  dataset:
1832
  type: mteb/amazon_massive_intent
1833
  name: MTEB MassiveIntentClassification (pt)
 
 
1834
  metrics:
1835
  - type: accuracy
1836
  value: 44.54270342972427
@@ -1841,6 +2025,8 @@ model-index:
1841
  dataset:
1842
  type: mteb/amazon_massive_intent
1843
  name: MTEB MassiveIntentClassification (ro)
 
 
1844
  metrics:
1845
  - type: accuracy
1846
  value: 39.96973772696705
@@ -1851,6 +2037,8 @@ model-index:
1851
  dataset:
1852
  type: mteb/amazon_massive_intent
1853
  name: MTEB MassiveIntentClassification (ru)
 
 
1854
  metrics:
1855
  - type: accuracy
1856
  value: 37.461331540013454
@@ -1861,6 +2049,8 @@ model-index:
1861
  dataset:
1862
  type: mteb/amazon_massive_intent
1863
  name: MTEB MassiveIntentClassification (sl)
 
 
1864
  metrics:
1865
  - type: accuracy
1866
  value: 38.28850033624748
@@ -1871,6 +2061,8 @@ model-index:
1871
  dataset:
1872
  type: mteb/amazon_massive_intent
1873
  name: MTEB MassiveIntentClassification (sq)
 
 
1874
  metrics:
1875
  - type: accuracy
1876
  value: 40.95494283792872
@@ -1881,6 +2073,8 @@ model-index:
1881
  dataset:
1882
  type: mteb/amazon_massive_intent
1883
  name: MTEB MassiveIntentClassification (sv)
 
 
1884
  metrics:
1885
  - type: accuracy
1886
  value: 41.85272360457296
@@ -1891,6 +2085,8 @@ model-index:
1891
  dataset:
1892
  type: mteb/amazon_massive_intent
1893
  name: MTEB MassiveIntentClassification (sw)
 
 
1894
  metrics:
1895
  - type: accuracy
1896
  value: 38.328850033624754
@@ -1901,6 +2097,8 @@ model-index:
1901
  dataset:
1902
  type: mteb/amazon_massive_intent
1903
  name: MTEB MassiveIntentClassification (ta)
 
 
1904
  metrics:
1905
  - type: accuracy
1906
  value: 19.031607262945528
@@ -1911,6 +2109,8 @@ model-index:
1911
  dataset:
1912
  type: mteb/amazon_massive_intent
1913
  name: MTEB MassiveIntentClassification (te)
 
 
1914
  metrics:
1915
  - type: accuracy
1916
  value: 19.38466711499664
@@ -1921,6 +2121,8 @@ model-index:
1921
  dataset:
1922
  type: mteb/amazon_massive_intent
1923
  name: MTEB MassiveIntentClassification (th)
 
 
1924
  metrics:
1925
  - type: accuracy
1926
  value: 34.088769334229994
@@ -1931,6 +2133,8 @@ model-index:
1931
  dataset:
1932
  type: mteb/amazon_massive_intent
1933
  name: MTEB MassiveIntentClassification (tl)
 
 
1934
  metrics:
1935
  - type: accuracy
1936
  value: 40.285810356422324
@@ -1941,6 +2145,8 @@ model-index:
1941
  dataset:
1942
  type: mteb/amazon_massive_intent
1943
  name: MTEB MassiveIntentClassification (tr)
 
 
1944
  metrics:
1945
  - type: accuracy
1946
  value: 38.860121049092136
@@ -1951,6 +2157,8 @@ model-index:
1951
  dataset:
1952
  type: mteb/amazon_massive_intent
1953
  name: MTEB MassiveIntentClassification (ur)
 
 
1954
  metrics:
1955
  - type: accuracy
1956
  value: 27.834566240753194
@@ -1961,6 +2169,8 @@ model-index:
1961
  dataset:
1962
  type: mteb/amazon_massive_intent
1963
  name: MTEB MassiveIntentClassification (vi)
 
 
1964
  metrics:
1965
  - type: accuracy
1966
  value: 38.70544720914593
@@ -1971,6 +2181,8 @@ model-index:
1971
  dataset:
1972
  type: mteb/amazon_massive_intent
1973
  name: MTEB MassiveIntentClassification (zh-CN)
 
 
1974
  metrics:
1975
  - type: accuracy
1976
  value: 45.78009414929387
@@ -1981,6 +2193,8 @@ model-index:
1981
  dataset:
1982
  type: mteb/amazon_massive_intent
1983
  name: MTEB MassiveIntentClassification (zh-TW)
 
 
1984
  metrics:
1985
  - type: accuracy
1986
  value: 42.32010759919301
@@ -1991,6 +2205,8 @@ model-index:
1991
  dataset:
1992
  type: mteb/amazon_massive_scenario
1993
  name: MTEB MassiveScenarioClassification (af)
 
 
1994
  metrics:
1995
  - type: accuracy
1996
  value: 40.24546065904506
@@ -2001,6 +2217,8 @@ model-index:
2001
  dataset:
2002
  type: mteb/amazon_massive_scenario
2003
  name: MTEB MassiveScenarioClassification (am)
 
 
2004
  metrics:
2005
  - type: accuracy
2006
  value: 25.68930733019502
@@ -2011,6 +2229,8 @@ model-index:
2011
  dataset:
2012
  type: mteb/amazon_massive_scenario
2013
  name: MTEB MassiveScenarioClassification (ar)
 
 
2014
  metrics:
2015
  - type: accuracy
2016
  value: 32.39744451916611
@@ -2021,6 +2241,8 @@ model-index:
2021
  dataset:
2022
  type: mteb/amazon_massive_scenario
2023
  name: MTEB MassiveScenarioClassification (az)
 
 
2024
  metrics:
2025
  - type: accuracy
2026
  value: 40.53127101546738
@@ -2031,6 +2253,8 @@ model-index:
2031
  dataset:
2032
  type: mteb/amazon_massive_scenario
2033
  name: MTEB MassiveScenarioClassification (bn)
 
 
2034
  metrics:
2035
  - type: accuracy
2036
  value: 27.23268325487559
@@ -2041,6 +2265,8 @@ model-index:
2041
  dataset:
2042
  type: mteb/amazon_massive_scenario
2043
  name: MTEB MassiveScenarioClassification (cy)
 
 
2044
  metrics:
2045
  - type: accuracy
2046
  value: 38.69872225958305
@@ -2051,6 +2277,8 @@ model-index:
2051
  dataset:
2052
  type: mteb/amazon_massive_scenario
2053
  name: MTEB MassiveScenarioClassification (da)
 
 
2054
  metrics:
2055
  - type: accuracy
2056
  value: 44.75453934095494
@@ -2061,6 +2289,8 @@ model-index:
2061
  dataset:
2062
  type: mteb/amazon_massive_scenario
2063
  name: MTEB MassiveScenarioClassification (de)
 
 
2064
  metrics:
2065
  - type: accuracy
2066
  value: 41.355077336919976
@@ -2071,6 +2301,8 @@ model-index:
2071
  dataset:
2072
  type: mteb/amazon_massive_scenario
2073
  name: MTEB MassiveScenarioClassification (el)
 
 
2074
  metrics:
2075
  - type: accuracy
2076
  value: 38.43981170141224
@@ -2081,6 +2313,8 @@ model-index:
2081
  dataset:
2082
  type: mteb/amazon_massive_scenario
2083
  name: MTEB MassiveScenarioClassification (en)
 
 
2084
  metrics:
2085
  - type: accuracy
2086
  value: 66.33826496301278
@@ -2091,6 +2325,8 @@ model-index:
2091
  dataset:
2092
  type: mteb/amazon_massive_scenario
2093
  name: MTEB MassiveScenarioClassification (es)
 
 
2094
  metrics:
2095
  - type: accuracy
2096
  value: 44.17955615332885
@@ -2101,6 +2337,8 @@ model-index:
2101
  dataset:
2102
  type: mteb/amazon_massive_scenario
2103
  name: MTEB MassiveScenarioClassification (fa)
 
 
2104
  metrics:
2105
  - type: accuracy
2106
  value: 34.82851378614661
@@ -2111,6 +2349,8 @@ model-index:
2111
  dataset:
2112
  type: mteb/amazon_massive_scenario
2113
  name: MTEB MassiveScenarioClassification (fi)
 
 
2114
  metrics:
2115
  - type: accuracy
2116
  value: 40.561533288500335
@@ -2121,6 +2361,8 @@ model-index:
2121
  dataset:
2122
  type: mteb/amazon_massive_scenario
2123
  name: MTEB MassiveScenarioClassification (fr)
 
 
2124
  metrics:
2125
  - type: accuracy
2126
  value: 45.917955615332886
@@ -2131,6 +2373,8 @@ model-index:
2131
  dataset:
2132
  type: mteb/amazon_massive_scenario
2133
  name: MTEB MassiveScenarioClassification (he)
 
 
2134
  metrics:
2135
  - type: accuracy
2136
  value: 32.08473436449227
@@ -2141,6 +2385,8 @@ model-index:
2141
  dataset:
2142
  type: mteb/amazon_massive_scenario
2143
  name: MTEB MassiveScenarioClassification (hi)
 
 
2144
  metrics:
2145
  - type: accuracy
2146
  value: 28.369199731002016
@@ -2151,6 +2397,8 @@ model-index:
2151
  dataset:
2152
  type: mteb/amazon_massive_scenario
2153
  name: MTEB MassiveScenarioClassification (hu)
 
 
2154
  metrics:
2155
  - type: accuracy
2156
  value: 39.49226630800269
@@ -2161,6 +2409,8 @@ model-index:
2161
  dataset:
2162
  type: mteb/amazon_massive_scenario
2163
  name: MTEB MassiveScenarioClassification (hy)
 
 
2164
  metrics:
2165
  - type: accuracy
2166
  value: 25.904505716207133
@@ -2171,6 +2421,8 @@ model-index:
2171
  dataset:
2172
  type: mteb/amazon_massive_scenario
2173
  name: MTEB MassiveScenarioClassification (id)
 
 
2174
  metrics:
2175
  - type: accuracy
2176
  value: 40.95830531271016
@@ -2181,6 +2433,8 @@ model-index:
2181
  dataset:
2182
  type: mteb/amazon_massive_scenario
2183
  name: MTEB MassiveScenarioClassification (is)
 
 
2184
  metrics:
2185
  - type: accuracy
2186
  value: 38.564223268325485
@@ -2191,6 +2445,8 @@ model-index:
2191
  dataset:
2192
  type: mteb/amazon_massive_scenario
2193
  name: MTEB MassiveScenarioClassification (it)
 
 
2194
  metrics:
2195
  - type: accuracy
2196
  value: 46.58708809683928
@@ -2201,6 +2457,8 @@ model-index:
2201
  dataset:
2202
  type: mteb/amazon_massive_scenario
2203
  name: MTEB MassiveScenarioClassification (ja)
 
 
2204
  metrics:
2205
  - type: accuracy
2206
  value: 46.24747814391393
@@ -2211,6 +2469,8 @@ model-index:
2211
  dataset:
2212
  type: mteb/amazon_massive_scenario
2213
  name: MTEB MassiveScenarioClassification (jv)
 
 
2214
  metrics:
2215
  - type: accuracy
2216
  value: 39.6570275722932
@@ -2221,6 +2481,8 @@ model-index:
2221
  dataset:
2222
  type: mteb/amazon_massive_scenario
2223
  name: MTEB MassiveScenarioClassification (ka)
 
 
2224
  metrics:
2225
  - type: accuracy
2226
  value: 25.279085406859448
@@ -2231,6 +2493,8 @@ model-index:
2231
  dataset:
2232
  type: mteb/amazon_massive_scenario
2233
  name: MTEB MassiveScenarioClassification (km)
 
 
2234
  metrics:
2235
  - type: accuracy
2236
  value: 28.97108271687962
@@ -2241,6 +2505,8 @@ model-index:
2241
  dataset:
2242
  type: mteb/amazon_massive_scenario
2243
  name: MTEB MassiveScenarioClassification (kn)
 
 
2244
  metrics:
2245
  - type: accuracy
2246
  value: 19.27370544720915
@@ -2251,6 +2517,8 @@ model-index:
2251
  dataset:
2252
  type: mteb/amazon_massive_scenario
2253
  name: MTEB MassiveScenarioClassification (ko)
 
 
2254
  metrics:
2255
  - type: accuracy
2256
  value: 35.729657027572294
@@ -2261,6 +2529,8 @@ model-index:
2261
  dataset:
2262
  type: mteb/amazon_massive_scenario
2263
  name: MTEB MassiveScenarioClassification (lv)
 
 
2264
  metrics:
2265
  - type: accuracy
2266
  value: 39.57296570275723
@@ -2271,6 +2541,8 @@ model-index:
2271
  dataset:
2272
  type: mteb/amazon_massive_scenario
2273
  name: MTEB MassiveScenarioClassification (ml)
 
 
2274
  metrics:
2275
  - type: accuracy
2276
  value: 19.895763281775388
@@ -2281,6 +2553,8 @@ model-index:
2281
  dataset:
2282
  type: mteb/amazon_massive_scenario
2283
  name: MTEB MassiveScenarioClassification (mn)
 
 
2284
  metrics:
2285
  - type: accuracy
2286
  value: 32.431069266980494
@@ -2291,6 +2565,8 @@ model-index:
2291
  dataset:
2292
  type: mteb/amazon_massive_scenario
2293
  name: MTEB MassiveScenarioClassification (ms)
 
 
2294
  metrics:
2295
  - type: accuracy
2296
  value: 42.32347007397445
@@ -2301,6 +2577,8 @@ model-index:
2301
  dataset:
2302
  type: mteb/amazon_massive_scenario
2303
  name: MTEB MassiveScenarioClassification (my)
 
 
2304
  metrics:
2305
  - type: accuracy
2306
  value: 20.864156018829856
@@ -2311,6 +2589,8 @@ model-index:
2311
  dataset:
2312
  type: mteb/amazon_massive_scenario
2313
  name: MTEB MassiveScenarioClassification (nb)
 
 
2314
  metrics:
2315
  - type: accuracy
2316
  value: 40.47074646940148
@@ -2321,6 +2601,8 @@ model-index:
2321
  dataset:
2322
  type: mteb/amazon_massive_scenario
2323
  name: MTEB MassiveScenarioClassification (nl)
 
 
2324
  metrics:
2325
  - type: accuracy
2326
  value: 43.591123066577
@@ -2331,6 +2613,8 @@ model-index:
2331
  dataset:
2332
  type: mteb/amazon_massive_scenario
2333
  name: MTEB MassiveScenarioClassification (pl)
 
 
2334
  metrics:
2335
  - type: accuracy
2336
  value: 41.876260928043045
@@ -2341,6 +2625,8 @@ model-index:
2341
  dataset:
2342
  type: mteb/amazon_massive_scenario
2343
  name: MTEB MassiveScenarioClassification (pt)
 
 
2344
  metrics:
2345
  - type: accuracy
2346
  value: 46.30800268997983
@@ -2351,6 +2637,8 @@ model-index:
2351
  dataset:
2352
  type: mteb/amazon_massive_scenario
2353
  name: MTEB MassiveScenarioClassification (ro)
 
 
2354
  metrics:
2355
  - type: accuracy
2356
  value: 42.525218560860786
@@ -2361,6 +2649,8 @@ model-index:
2361
  dataset:
2362
  type: mteb/amazon_massive_scenario
2363
  name: MTEB MassiveScenarioClassification (ru)
 
 
2364
  metrics:
2365
  - type: accuracy
2366
  value: 35.94821788836584
@@ -2371,6 +2661,8 @@ model-index:
2371
  dataset:
2372
  type: mteb/amazon_massive_scenario
2373
  name: MTEB MassiveScenarioClassification (sl)
 
 
2374
  metrics:
2375
  - type: accuracy
2376
  value: 38.69199731002017
@@ -2381,6 +2673,8 @@ model-index:
2381
  dataset:
2382
  type: mteb/amazon_massive_scenario
2383
  name: MTEB MassiveScenarioClassification (sq)
 
 
2384
  metrics:
2385
  - type: accuracy
2386
  value: 40.474108944182916
@@ -2391,6 +2685,8 @@ model-index:
2391
  dataset:
2392
  type: mteb/amazon_massive_scenario
2393
  name: MTEB MassiveScenarioClassification (sv)
 
 
2394
  metrics:
2395
  - type: accuracy
2396
  value: 41.523201075991935
@@ -2401,6 +2697,8 @@ model-index:
2401
  dataset:
2402
  type: mteb/amazon_massive_scenario
2403
  name: MTEB MassiveScenarioClassification (sw)
 
 
2404
  metrics:
2405
  - type: accuracy
2406
  value: 39.54942837928716
@@ -2411,6 +2709,8 @@ model-index:
2411
  dataset:
2412
  type: mteb/amazon_massive_scenario
2413
  name: MTEB MassiveScenarioClassification (ta)
 
 
2414
  metrics:
2415
  - type: accuracy
2416
  value: 22.8782784129119
@@ -2421,6 +2721,8 @@ model-index:
2421
  dataset:
2422
  type: mteb/amazon_massive_scenario
2423
  name: MTEB MassiveScenarioClassification (te)
 
 
2424
  metrics:
2425
  - type: accuracy
2426
  value: 20.51445864156019
@@ -2431,6 +2733,8 @@ model-index:
2431
  dataset:
2432
  type: mteb/amazon_massive_scenario
2433
  name: MTEB MassiveScenarioClassification (th)
 
 
2434
  metrics:
2435
  - type: accuracy
2436
  value: 34.92602555480834
@@ -2441,6 +2745,8 @@ model-index:
2441
  dataset:
2442
  type: mteb/amazon_massive_scenario
2443
  name: MTEB MassiveScenarioClassification (tl)
 
 
2444
  metrics:
2445
  - type: accuracy
2446
  value: 40.74983187626093
@@ -2451,6 +2757,8 @@ model-index:
2451
  dataset:
2452
  type: mteb/amazon_massive_scenario
2453
  name: MTEB MassiveScenarioClassification (tr)
 
 
2454
  metrics:
2455
  - type: accuracy
2456
  value: 39.06859448554136
@@ -2461,6 +2769,8 @@ model-index:
2461
  dataset:
2462
  type: mteb/amazon_massive_scenario
2463
  name: MTEB MassiveScenarioClassification (ur)
 
 
2464
  metrics:
2465
  - type: accuracy
2466
  value: 29.747814391392062
@@ -2471,6 +2781,8 @@ model-index:
2471
  dataset:
2472
  type: mteb/amazon_massive_scenario
2473
  name: MTEB MassiveScenarioClassification (vi)
 
 
2474
  metrics:
2475
  - type: accuracy
2476
  value: 38.02286482851379
@@ -2481,6 +2793,8 @@ model-index:
2481
  dataset:
2482
  type: mteb/amazon_massive_scenario
2483
  name: MTEB MassiveScenarioClassification (zh-CN)
 
 
2484
  metrics:
2485
  - type: accuracy
2486
  value: 48.550773369199725
@@ -2491,6 +2805,8 @@ model-index:
2491
  dataset:
2492
  type: mteb/amazon_massive_scenario
2493
  name: MTEB MassiveScenarioClassification (zh-TW)
 
 
2494
  metrics:
2495
  - type: accuracy
2496
  value: 45.17821116341628
@@ -2501,6 +2817,8 @@ model-index:
2501
  dataset:
2502
  type: mteb/medrxiv-clustering-p2p
2503
  name: MTEB MedrxivClusteringP2P
 
 
2504
  metrics:
2505
  - type: v_measure
2506
  value: 28.301902023313875
@@ -2509,6 +2827,8 @@ model-index:
2509
  dataset:
2510
  type: mteb/medrxiv-clustering-s2s
2511
  name: MTEB MedrxivClusteringS2S
 
 
2512
  metrics:
2513
  - type: v_measure
2514
  value: 24.932123582259287
@@ -2517,6 +2837,8 @@ model-index:
2517
  dataset:
2518
  type: mteb/mind_small
2519
  name: MTEB MindSmallReranking
 
 
2520
  metrics:
2521
  - type: map
2522
  value: 29.269341041468326
@@ -2527,6 +2849,8 @@ model-index:
2527
  dataset:
2528
  type: nfcorpus
2529
  name: MTEB NFCorpus
 
 
2530
  metrics:
2531
  - type: map_at_1
2532
  value: 1.2269999999999999
@@ -2581,6 +2905,8 @@ model-index:
2581
  dataset:
2582
  type: nq
2583
  name: MTEB NQ
 
 
2584
  metrics:
2585
  - type: map_at_1
2586
  value: 3.515
@@ -2635,6 +2961,8 @@ model-index:
2635
  dataset:
2636
  type: quora
2637
  name: MTEB QuoraRetrieval
 
 
2638
  metrics:
2639
  - type: map_at_1
2640
  value: 61.697
@@ -2689,6 +3017,8 @@ model-index:
2689
  dataset:
2690
  type: mteb/reddit-clustering
2691
  name: MTEB RedditClustering
 
 
2692
  metrics:
2693
  - type: v_measure
2694
  value: 33.75741018380938
@@ -2697,6 +3027,8 @@ model-index:
2697
  dataset:
2698
  type: mteb/reddit-clustering-p2p
2699
  name: MTEB RedditClusteringP2P
 
 
2700
  metrics:
2701
  - type: v_measure
2702
  value: 41.00799910099266
@@ -2705,6 +3037,8 @@ model-index:
2705
  dataset:
2706
  type: scidocs
2707
  name: MTEB SCIDOCS
 
 
2708
  metrics:
2709
  - type: map_at_1
2710
  value: 1.72
@@ -2759,6 +3093,8 @@ model-index:
2759
  dataset:
2760
  type: mteb/sickr-sts
2761
  name: MTEB SICK-R
 
 
2762
  metrics:
2763
  - type: cos_sim_pearson
2764
  value: 80.96286245858941
@@ -2777,6 +3113,8 @@ model-index:
2777
  dataset:
2778
  type: mteb/sts12-sts
2779
  name: MTEB STS12
 
 
2780
  metrics:
2781
  - type: cos_sim_pearson
2782
  value: 80.20938796088339
@@ -2795,6 +3133,8 @@ model-index:
2795
  dataset:
2796
  type: mteb/sts13-sts
2797
  name: MTEB STS13
 
 
2798
  metrics:
2799
  - type: cos_sim_pearson
2800
  value: 76.401935081936
@@ -2813,6 +3153,8 @@ model-index:
2813
  dataset:
2814
  type: mteb/sts14-sts
2815
  name: MTEB STS14
 
 
2816
  metrics:
2817
  - type: cos_sim_pearson
2818
  value: 75.35551963935667
@@ -2831,6 +3173,8 @@ model-index:
2831
  dataset:
2832
  type: mteb/sts15-sts
2833
  name: MTEB STS15
 
 
2834
  metrics:
2835
  - type: cos_sim_pearson
2836
  value: 79.05293131911803
@@ -2849,6 +3193,8 @@ model-index:
2849
  dataset:
2850
  type: mteb/sts16-sts
2851
  name: MTEB STS16
 
 
2852
  metrics:
2853
  - type: cos_sim_pearson
2854
  value: 76.04750373932828
@@ -2867,6 +3213,8 @@ model-index:
2867
  dataset:
2868
  type: mteb/sts17-crosslingual-sts
2869
  name: MTEB STS17 (ko-ko)
 
 
2870
  metrics:
2871
  - type: cos_sim_pearson
2872
  value: 43.0464619152799
@@ -2885,6 +3233,8 @@ model-index:
2885
  dataset:
2886
  type: mteb/sts17-crosslingual-sts
2887
  name: MTEB STS17 (ar-ar)
 
 
2888
  metrics:
2889
  - type: cos_sim_pearson
2890
  value: 53.27469278912148
@@ -2903,6 +3253,8 @@ model-index:
2903
  dataset:
2904
  type: mteb/sts17-crosslingual-sts
2905
  name: MTEB STS17 (en-ar)
 
 
2906
  metrics:
2907
  - type: cos_sim_pearson
2908
  value: 1.5482997790039945
@@ -2921,6 +3273,8 @@ model-index:
2921
  dataset:
2922
  type: mteb/sts17-crosslingual-sts
2923
  name: MTEB STS17 (en-de)
 
 
2924
  metrics:
2925
  - type: cos_sim_pearson
2926
  value: 27.5420218362265
@@ -2939,6 +3293,8 @@ model-index:
2939
  dataset:
2940
  type: mteb/sts17-crosslingual-sts
2941
  name: MTEB STS17 (en-en)
 
 
2942
  metrics:
2943
  - type: cos_sim_pearson
2944
  value: 85.32029757646663
@@ -2957,6 +3313,8 @@ model-index:
2957
  dataset:
2958
  type: mteb/sts17-crosslingual-sts
2959
  name: MTEB STS17 (en-tr)
 
 
2960
  metrics:
2961
  - type: cos_sim_pearson
2962
  value: 4.37162299241808
@@ -2975,6 +3333,8 @@ model-index:
2975
  dataset:
2976
  type: mteb/sts17-crosslingual-sts
2977
  name: MTEB STS17 (es-en)
 
 
2978
  metrics:
2979
  - type: cos_sim_pearson
2980
  value: 20.306030448858603
@@ -2993,6 +3353,8 @@ model-index:
2993
  dataset:
2994
  type: mteb/sts17-crosslingual-sts
2995
  name: MTEB STS17 (es-es)
 
 
2996
  metrics:
2997
  - type: cos_sim_pearson
2998
  value: 66.81873207478459
@@ -3011,6 +3373,8 @@ model-index:
3011
  dataset:
3012
  type: mteb/sts17-crosslingual-sts
3013
  name: MTEB STS17 (fr-en)
 
 
3014
  metrics:
3015
  - type: cos_sim_pearson
3016
  value: 21.366487281202602
@@ -3029,6 +3393,8 @@ model-index:
3029
  dataset:
3030
  type: mteb/sts17-crosslingual-sts
3031
  name: MTEB STS17 (it-en)
 
 
3032
  metrics:
3033
  - type: cos_sim_pearson
3034
  value: 20.73153177251085
@@ -3047,6 +3413,8 @@ model-index:
3047
  dataset:
3048
  type: mteb/sts17-crosslingual-sts
3049
  name: MTEB STS17 (nl-en)
 
 
3050
  metrics:
3051
  - type: cos_sim_pearson
3052
  value: 26.618435024084253
@@ -3065,6 +3433,8 @@ model-index:
3065
  dataset:
3066
  type: mteb/sts22-crosslingual-sts
3067
  name: MTEB STS22 (en)
 
 
3068
  metrics:
3069
  - type: cos_sim_pearson
3070
  value: 59.17638344661753
@@ -3083,6 +3453,8 @@ model-index:
3083
  dataset:
3084
  type: mteb/sts22-crosslingual-sts
3085
  name: MTEB STS22 (de)
 
 
3086
  metrics:
3087
  - type: cos_sim_pearson
3088
  value: 10.322254716987457
@@ -3101,6 +3473,8 @@ model-index:
3101
  dataset:
3102
  type: mteb/sts22-crosslingual-sts
3103
  name: MTEB STS22 (es)
 
 
3104
  metrics:
3105
  - type: cos_sim_pearson
3106
  value: 43.38031880545056
@@ -3119,6 +3493,8 @@ model-index:
3119
  dataset:
3120
  type: mteb/sts22-crosslingual-sts
3121
  name: MTEB STS22 (pl)
 
 
3122
  metrics:
3123
  - type: cos_sim_pearson
3124
  value: 4.291290504363136
@@ -3137,6 +3513,8 @@ model-index:
3137
  dataset:
3138
  type: mteb/sts22-crosslingual-sts
3139
  name: MTEB STS22 (tr)
 
 
3140
  metrics:
3141
  - type: cos_sim_pearson
3142
  value: 4.102739498555817
@@ -3155,6 +3533,8 @@ model-index:
3155
  dataset:
3156
  type: mteb/sts22-crosslingual-sts
3157
  name: MTEB STS22 (ar)
 
 
3158
  metrics:
3159
  - type: cos_sim_pearson
3160
  value: 2.38765395226737
@@ -3173,6 +3553,8 @@ model-index:
3173
  dataset:
3174
  type: mteb/sts22-crosslingual-sts
3175
  name: MTEB STS22 (ru)
 
 
3176
  metrics:
3177
  - type: cos_sim_pearson
3178
  value: 7.6735490672676345
@@ -3191,6 +3573,8 @@ model-index:
3191
  dataset:
3192
  type: mteb/sts22-crosslingual-sts
3193
  name: MTEB STS22 (zh)
 
 
3194
  metrics:
3195
  - type: cos_sim_pearson
3196
  value: 0.06167614416104335
@@ -3209,6 +3593,8 @@ model-index:
3209
  dataset:
3210
  type: mteb/sts22-crosslingual-sts
3211
  name: MTEB STS22 (fr)
 
 
3212
  metrics:
3213
  - type: cos_sim_pearson
3214
  value: 53.19490347682836
@@ -3227,6 +3613,8 @@ model-index:
3227
  dataset:
3228
  type: mteb/sts22-crosslingual-sts
3229
  name: MTEB STS22 (de-en)
 
 
3230
  metrics:
3231
  - type: cos_sim_pearson
3232
  value: 51.151158530122146
@@ -3245,6 +3633,8 @@ model-index:
3245
  dataset:
3246
  type: mteb/sts22-crosslingual-sts
3247
  name: MTEB STS22 (es-en)
 
 
3248
  metrics:
3249
  - type: cos_sim_pearson
3250
  value: 30.36194885126792
@@ -3263,6 +3653,8 @@ model-index:
3263
  dataset:
3264
  type: mteb/sts22-crosslingual-sts
3265
  name: MTEB STS22 (it)
 
 
3266
  metrics:
3267
  - type: cos_sim_pearson
3268
  value: 35.23883630335275
@@ -3281,6 +3673,8 @@ model-index:
3281
  dataset:
3282
  type: mteb/sts22-crosslingual-sts
3283
  name: MTEB STS22 (pl-en)
 
 
3284
  metrics:
3285
  - type: cos_sim_pearson
3286
  value: 19.809302548119547
@@ -3299,6 +3693,8 @@ model-index:
3299
  dataset:
3300
  type: mteb/sts22-crosslingual-sts
3301
  name: MTEB STS22 (zh-en)
 
 
3302
  metrics:
3303
  - type: cos_sim_pearson
3304
  value: 20.393500955410488
@@ -3317,6 +3713,8 @@ model-index:
3317
  dataset:
3318
  type: mteb/sts22-crosslingual-sts
3319
  name: MTEB STS22 (es-it)
 
 
3320
  metrics:
3321
  - type: cos_sim_pearson
3322
  value: 36.58919983075148
@@ -3335,6 +3733,8 @@ model-index:
3335
  dataset:
3336
  type: mteb/sts22-crosslingual-sts
3337
  name: MTEB STS22 (de-fr)
 
 
3338
  metrics:
3339
  - type: cos_sim_pearson
3340
  value: 26.350936227950083
@@ -3353,6 +3753,8 @@ model-index:
3353
  dataset:
3354
  type: mteb/sts22-crosslingual-sts
3355
  name: MTEB STS22 (de-pl)
 
 
3356
  metrics:
3357
  - type: cos_sim_pearson
3358
  value: 20.056269198600322
@@ -3371,6 +3773,8 @@ model-index:
3371
  dataset:
3372
  type: mteb/sts22-crosslingual-sts
3373
  name: MTEB STS22 (fr-pl)
 
 
3374
  metrics:
3375
  - type: cos_sim_pearson
3376
  value: 19.563740271419395
@@ -3389,6 +3793,8 @@ model-index:
3389
  dataset:
3390
  type: mteb/stsbenchmark-sts
3391
  name: MTEB STSBenchmark
 
 
3392
  metrics:
3393
  - type: cos_sim_pearson
3394
  value: 80.00905671833966
@@ -3407,6 +3813,8 @@ model-index:
3407
  dataset:
3408
  type: mteb/scidocs-reranking
3409
  name: MTEB SciDocsRR
 
 
3410
  metrics:
3411
  - type: map
3412
  value: 68.35710819755543
@@ -3417,6 +3825,8 @@ model-index:
3417
  dataset:
3418
  type: scifact
3419
  name: MTEB SciFact
 
 
3420
  metrics:
3421
  - type: map_at_1
3422
  value: 21.556
@@ -3471,6 +3881,8 @@ model-index:
3471
  dataset:
3472
  type: mteb/sprintduplicatequestions-pairclassification
3473
  name: MTEB SprintDuplicateQuestions
 
 
3474
  metrics:
3475
  - type: cos_sim_accuracy
3476
  value: 99.49306930693069
@@ -3523,6 +3935,8 @@ model-index:
3523
  dataset:
3524
  type: mteb/stackexchange-clustering
3525
  name: MTEB StackExchangeClustering
 
 
3526
  metrics:
3527
  - type: v_measure
3528
  value: 44.59127540530939
@@ -3531,6 +3945,8 @@ model-index:
3531
  dataset:
3532
  type: mteb/stackexchange-clustering-p2p
3533
  name: MTEB StackExchangeClusteringP2P
 
 
3534
  metrics:
3535
  - type: v_measure
3536
  value: 28.230204578753636
@@ -3539,6 +3955,8 @@ model-index:
3539
  dataset:
3540
  type: mteb/stackoverflowdupquestions-reranking
3541
  name: MTEB StackOverflowDupQuestions
 
 
3542
  metrics:
3543
  - type: map
3544
  value: 39.96520488022785
@@ -3549,6 +3967,8 @@ model-index:
3549
  dataset:
3550
  type: mteb/summeval
3551
  name: MTEB SummEval
 
 
3552
  metrics:
3553
  - type: cos_sim_pearson
3554
  value: 30.56303767714449
@@ -3563,6 +3983,8 @@ model-index:
3563
  dataset:
3564
  type: trec-covid
3565
  name: MTEB TRECCOVID
 
 
3566
  metrics:
3567
  - type: map_at_1
3568
  value: 0.11299999999999999
@@ -3617,6 +4039,8 @@ model-index:
3617
  dataset:
3618
  type: webis-touche2020
3619
  name: MTEB Touche2020
 
 
3620
  metrics:
3621
  - type: map_at_1
3622
  value: 0.645
@@ -3671,6 +4095,8 @@ model-index:
3671
  dataset:
3672
  type: mteb/toxic_conversations_50k
3673
  name: MTEB ToxicConversationsClassification
 
 
3674
  metrics:
3675
  - type: accuracy
3676
  value: 62.7862
@@ -3683,6 +4109,8 @@ model-index:
3683
  dataset:
3684
  type: mteb/tweet_sentiment_extraction
3685
  name: MTEB TweetSentimentExtractionClassification
 
 
3686
  metrics:
3687
  - type: accuracy
3688
  value: 54.821731748726656
@@ -3693,6 +4121,8 @@ model-index:
3693
  dataset:
3694
  type: mteb/twentynewsgroups-clustering
3695
  name: MTEB TwentyNewsgroupsClustering
 
 
3696
  metrics:
3697
  - type: v_measure
3698
  value: 28.24295128553035
@@ -3701,6 +4131,8 @@ model-index:
3701
  dataset:
3702
  type: mteb/twittersemeval2015-pairclassification
3703
  name: MTEB TwitterSemEval2015
 
 
3704
  metrics:
3705
  - type: cos_sim_accuracy
3706
  value: 81.5640460153782
@@ -3753,6 +4185,8 @@ model-index:
3753
  dataset:
3754
  type: mteb/twitterurlcorpus-pairclassification
3755
  name: MTEB TwitterURLCorpus
 
 
3756
  metrics:
3757
  - type: cos_sim_accuracy
3758
  value: 86.63018589668955
 
13
  dataset:
14
  type: mteb/amazon_counterfactual
15
  name: MTEB AmazonCounterfactualClassification (en)
16
+ config: en
17
+ split: test
18
  metrics:
19
  - type: accuracy
20
  value: 65.88059701492537
 
27
  dataset:
28
  type: mteb/amazon_counterfactual
29
  name: MTEB AmazonCounterfactualClassification (de)
30
+ config: de
31
+ split: test
32
  metrics:
33
  - type: accuracy
34
  value: 59.07922912205568
 
41
  dataset:
42
  type: mteb/amazon_counterfactual
43
  name: MTEB AmazonCounterfactualClassification (en-ext)
44
+ config: en-ext
45
+ split: test
46
  metrics:
47
  - type: accuracy
48
  value: 64.91754122938531
 
55
  dataset:
56
  type: mteb/amazon_counterfactual
57
  name: MTEB AmazonCounterfactualClassification (ja)
58
+ config: ja
59
+ split: test
60
  metrics:
61
  - type: accuracy
62
  value: 56.423982869378996
 
69
  dataset:
70
  type: mteb/amazon_polarity
71
  name: MTEB AmazonPolarityClassification
72
+ config: default
73
+ split: test
74
  metrics:
75
  - type: accuracy
76
  value: 74.938225
 
83
  dataset:
84
  type: mteb/amazon_reviews_multi
85
  name: MTEB AmazonReviewsClassification (en)
86
+ config: en
87
+ split: test
88
  metrics:
89
  - type: accuracy
90
  value: 35.098
 
95
  dataset:
96
  type: mteb/amazon_reviews_multi
97
  name: MTEB AmazonReviewsClassification (de)
98
+ config: de
99
+ split: test
100
  metrics:
101
  - type: accuracy
102
  value: 24.516
 
107
  dataset:
108
  type: mteb/amazon_reviews_multi
109
  name: MTEB AmazonReviewsClassification (es)
110
+ config: es
111
+ split: test
112
  metrics:
113
  - type: accuracy
114
  value: 29.097999999999995
 
119
  dataset:
120
  type: mteb/amazon_reviews_multi
121
  name: MTEB AmazonReviewsClassification (fr)
122
+ config: fr
123
+ split: test
124
  metrics:
125
  - type: accuracy
126
  value: 27.395999999999997
 
131
  dataset:
132
  type: mteb/amazon_reviews_multi
133
  name: MTEB AmazonReviewsClassification (ja)
134
+ config: ja
135
+ split: test
136
  metrics:
137
  - type: accuracy
138
  value: 21.724
 
143
  dataset:
144
  type: mteb/amazon_reviews_multi
145
  name: MTEB AmazonReviewsClassification (zh)
146
+ config: zh
147
+ split: test
148
  metrics:
149
  - type: accuracy
150
  value: 23.976
 
155
  dataset:
156
  type: arguana
157
  name: MTEB ArguAna
158
+ config: default
159
+ split: test
160
  metrics:
161
  - type: map_at_1
162
  value: 13.442000000000002
 
211
  dataset:
212
  type: mteb/arxiv-clustering-p2p
213
  name: MTEB ArxivClusteringP2P
214
+ config: default
215
+ split: test
216
  metrics:
217
  - type: v_measure
218
  value: 34.742482477870766
 
221
  dataset:
222
  type: mteb/arxiv-clustering-s2s
223
  name: MTEB ArxivClusteringS2S
224
+ config: default
225
+ split: test
226
  metrics:
227
  - type: v_measure
228
  value: 24.67870651472156
 
231
  dataset:
232
  type: mteb/askubuntudupquestions-reranking
233
  name: MTEB AskUbuntuDupQuestions
234
+ config: default
235
+ split: test
236
  metrics:
237
  - type: map
238
  value: 52.63439984994702
 
243
  dataset:
244
  type: mteb/biosses-sts
245
  name: MTEB BIOSSES
246
+ config: default
247
+ split: test
248
  metrics:
249
  - type: cos_sim_pearson
250
  value: 72.78000135012542
 
263
  dataset:
264
  type: mteb/bucc-bitext-mining
265
  name: MTEB BUCC (de-en)
266
+ config: de-en
267
+ split: test
268
  metrics:
269
  - type: accuracy
270
  value: 1.0960334029227559
 
279
  dataset:
280
  type: mteb/bucc-bitext-mining
281
  name: MTEB BUCC (fr-en)
282
+ config: fr-en
283
+ split: test
284
  metrics:
285
  - type: accuracy
286
  value: 0.02201188641866608
 
295
  dataset:
296
  type: mteb/bucc-bitext-mining
297
  name: MTEB BUCC (ru-en)
298
+ config: ru-en
299
+ split: test
300
  metrics:
301
  - type: accuracy
302
  value: 0.0
 
311
  dataset:
312
  type: mteb/bucc-bitext-mining
313
  name: MTEB BUCC (zh-en)
314
+ config: zh-en
315
+ split: test
316
  metrics:
317
  - type: accuracy
318
  value: 0.0
 
327
  dataset:
328
  type: mteb/banking77
329
  name: MTEB Banking77Classification
330
+ config: default
331
+ split: test
332
  metrics:
333
  - type: accuracy
334
  value: 74.67857142857142
 
339
  dataset:
340
  type: mteb/biorxiv-clustering-p2p
341
  name: MTEB BiorxivClusteringP2P
342
+ config: default
343
+ split: test
344
  metrics:
345
  - type: v_measure
346
  value: 28.93427045246491
 
349
  dataset:
350
  type: mteb/biorxiv-clustering-s2s
351
  name: MTEB BiorxivClusteringS2S
352
+ config: default
353
+ split: test
354
  metrics:
355
  - type: v_measure
356
  value: 23.080939123955474
 
359
  dataset:
360
  type: BeIR/cqadupstack
361
  name: MTEB CQADupstackAndroidRetrieval
362
+ config: default
363
+ split: test
364
  metrics:
365
  - type: map_at_1
366
  value: 18.221999999999998
 
415
  dataset:
416
  type: BeIR/cqadupstack
417
  name: MTEB CQADupstackEnglishRetrieval
418
+ config: default
419
+ split: test
420
  metrics:
421
  - type: map_at_1
422
  value: 12.058
 
471
  dataset:
472
  type: BeIR/cqadupstack
473
  name: MTEB CQADupstackGamingRetrieval
474
+ config: default
475
+ split: test
476
  metrics:
477
  - type: map_at_1
478
  value: 21.183
 
527
  dataset:
528
  type: BeIR/cqadupstack
529
  name: MTEB CQADupstackGisRetrieval
530
+ config: default
531
+ split: test
532
  metrics:
533
  - type: map_at_1
534
  value: 11.350999999999999
 
583
  dataset:
584
  type: BeIR/cqadupstack
585
  name: MTEB CQADupstackMathematicaRetrieval
586
+ config: default
587
+ split: test
588
  metrics:
589
  - type: map_at_1
590
  value: 8.08
 
639
  dataset:
640
  type: BeIR/cqadupstack
641
  name: MTEB CQADupstackPhysicsRetrieval
642
+ config: default
643
+ split: test
644
  metrics:
645
  - type: map_at_1
646
  value: 13.908999999999999
 
695
  dataset:
696
  type: BeIR/cqadupstack
697
  name: MTEB CQADupstackProgrammersRetrieval
698
+ config: default
699
+ split: test
700
  metrics:
701
  - type: map_at_1
702
  value: 12.598
 
751
  dataset:
752
  type: BeIR/cqadupstack
753
  name: MTEB CQADupstackRetrieval
754
+ config: default
755
+ split: test
756
  metrics:
757
  - type: map_at_1
758
  value: 12.738416666666666
 
807
  dataset:
808
  type: BeIR/cqadupstack
809
  name: MTEB CQADupstackStatsRetrieval
810
+ config: default
811
+ split: test
812
  metrics:
813
  - type: map_at_1
814
  value: 12.307
 
863
  dataset:
864
  type: BeIR/cqadupstack
865
  name: MTEB CQADupstackTexRetrieval
866
+ config: default
867
+ split: test
868
  metrics:
869
  - type: map_at_1
870
  value: 6.496
 
919
  dataset:
920
  type: BeIR/cqadupstack
921
  name: MTEB CQADupstackUnixRetrieval
922
+ config: default
923
+ split: test
924
  metrics:
925
  - type: map_at_1
926
  value: 13.843
 
975
  dataset:
976
  type: BeIR/cqadupstack
977
  name: MTEB CQADupstackWebmastersRetrieval
978
+ config: default
979
+ split: test
980
  metrics:
981
  - type: map_at_1
982
  value: 13.757
 
1031
  dataset:
1032
  type: BeIR/cqadupstack
1033
  name: MTEB CQADupstackWordpressRetrieval
1034
+ config: default
1035
+ split: test
1036
  metrics:
1037
  - type: map_at_1
1038
  value: 9.057
 
1087
  dataset:
1088
  type: climate-fever
1089
  name: MTEB ClimateFEVER
1090
+ config: default
1091
+ split: test
1092
  metrics:
1093
  - type: map_at_1
1094
  value: 3.714
 
1143
  dataset:
1144
  type: dbpedia-entity
1145
  name: MTEB DBPedia
1146
+ config: default
1147
+ split: test
1148
  metrics:
1149
  - type: map_at_1
1150
  value: 1.764
 
1199
  dataset:
1200
  type: mteb/emotion
1201
  name: MTEB EmotionClassification
1202
+ config: default
1203
+ split: test
1204
  metrics:
1205
  - type: accuracy
1206
  value: 42.225
 
1211
  dataset:
1212
  type: fever
1213
  name: MTEB FEVER
1214
+ config: default
1215
+ split: test
1216
  metrics:
1217
  - type: map_at_1
1218
  value: 11.497
 
1267
  dataset:
1268
  type: fiqa
1269
  name: MTEB FiQA2018
1270
+ config: default
1271
+ split: test
1272
  metrics:
1273
  - type: map_at_1
1274
  value: 3.637
 
1323
  dataset:
1324
  type: hotpotqa
1325
  name: MTEB HotpotQA
1326
+ config: default
1327
+ split: test
1328
  metrics:
1329
  - type: map_at_1
1330
  value: 9.676
 
1379
  dataset:
1380
  type: mteb/imdb
1381
  name: MTEB ImdbClassification
1382
+ config: default
1383
+ split: test
1384
  metrics:
1385
  - type: accuracy
1386
  value: 62.895999999999994
 
1393
  dataset:
1394
  type: msmarco
1395
  name: MTEB MSMARCO
1396
+ config: default
1397
+ split: validation
1398
  metrics:
1399
  - type: map_at_1
1400
  value: 2.88
 
1449
  dataset:
1450
  type: mteb/mtop_domain
1451
  name: MTEB MTOPDomainClassification (en)
1452
+ config: en
1453
+ split: test
1454
  metrics:
1455
  - type: accuracy
1456
  value: 81.51846785225717
 
1461
  dataset:
1462
  type: mteb/mtop_domain
1463
  name: MTEB MTOPDomainClassification (de)
1464
+ config: de
1465
+ split: test
1466
  metrics:
1467
  - type: accuracy
1468
  value: 60.37475345167653
 
1473
  dataset:
1474
  type: mteb/mtop_domain
1475
  name: MTEB MTOPDomainClassification (es)
1476
+ config: es
1477
+ split: test
1478
  metrics:
1479
  - type: accuracy
1480
  value: 67.36824549699799
 
1485
  dataset:
1486
  type: mteb/mtop_domain
1487
  name: MTEB MTOPDomainClassification (fr)
1488
+ config: fr
1489
+ split: test
1490
  metrics:
1491
  - type: accuracy
1492
  value: 63.12871907297212
 
1497
  dataset:
1498
  type: mteb/mtop_domain
1499
  name: MTEB MTOPDomainClassification (hi)
1500
+ config: hi
1501
+ split: test
1502
  metrics:
1503
  - type: accuracy
1504
  value: 47.04553603442094
 
1509
  dataset:
1510
  type: mteb/mtop_domain
1511
  name: MTEB MTOPDomainClassification (th)
1512
+ config: th
1513
+ split: test
1514
  metrics:
1515
  - type: accuracy
1516
  value: 52.282097649186255
 
1521
  dataset:
1522
  type: mteb/mtop_intent
1523
  name: MTEB MTOPIntentClassification (en)
1524
+ config: en
1525
+ split: test
1526
  metrics:
1527
  - type: accuracy
1528
  value: 58.2421340629275
 
1533
  dataset:
1534
  type: mteb/mtop_intent
1535
  name: MTEB MTOPIntentClassification (de)
1536
+ config: de
1537
+ split: test
1538
  metrics:
1539
  - type: accuracy
1540
  value: 45.069033530571986
 
1545
  dataset:
1546
  type: mteb/mtop_intent
1547
  name: MTEB MTOPIntentClassification (es)
1548
+ config: es
1549
+ split: test
1550
  metrics:
1551
  - type: accuracy
1552
  value: 48.80920613742495
 
1557
  dataset:
1558
  type: mteb/mtop_intent
1559
  name: MTEB MTOPIntentClassification (fr)
1560
+ config: fr
1561
+ split: test
1562
  metrics:
1563
  - type: accuracy
1564
  value: 44.337613529595984
 
1569
  dataset:
1570
  type: mteb/mtop_intent
1571
  name: MTEB MTOPIntentClassification (hi)
1572
+ config: hi
1573
+ split: test
1574
  metrics:
1575
  - type: accuracy
1576
  value: 34.198637504481894
 
1581
  dataset:
1582
  type: mteb/mtop_intent
1583
  name: MTEB MTOPIntentClassification (th)
1584
+ config: th
1585
+ split: test
1586
  metrics:
1587
  - type: accuracy
1588
  value: 43.11030741410488
 
1593
  dataset:
1594
  type: mteb/amazon_massive_intent
1595
  name: MTEB MassiveIntentClassification (af)
1596
+ config: af
1597
+ split: test
1598
  metrics:
1599
  - type: accuracy
1600
  value: 37.79421654337593
 
1605
  dataset:
1606
  type: mteb/amazon_massive_intent
1607
  name: MTEB MassiveIntentClassification (am)
1608
+ config: am
1609
+ split: test
1610
  metrics:
1611
  - type: accuracy
1612
  value: 23.722259583053127
 
1617
  dataset:
1618
  type: mteb/amazon_massive_intent
1619
  name: MTEB MassiveIntentClassification (ar)
1620
+ config: ar
1621
+ split: test
1622
  metrics:
1623
  - type: accuracy
1624
  value: 29.64021519838601
 
1629
  dataset:
1630
  type: mteb/amazon_massive_intent
1631
  name: MTEB MassiveIntentClassification (az)
1632
+ config: az
1633
+ split: test
1634
  metrics:
1635
  - type: accuracy
1636
  value: 39.4754539340955
 
1641
  dataset:
1642
  type: mteb/amazon_massive_intent
1643
  name: MTEB MassiveIntentClassification (bn)
1644
+ config: bn
1645
+ split: test
1646
  metrics:
1647
  - type: accuracy
1648
  value: 26.550100874243444
 
1653
  dataset:
1654
  type: mteb/amazon_massive_intent
1655
  name: MTEB MassiveIntentClassification (cy)
1656
+ config: cy
1657
+ split: test
1658
  metrics:
1659
  - type: accuracy
1660
  value: 38.78278412911904
 
1665
  dataset:
1666
  type: mteb/amazon_massive_intent
1667
  name: MTEB MassiveIntentClassification (da)
1668
+ config: da
1669
+ split: test
1670
  metrics:
1671
  - type: accuracy
1672
  value: 43.557498318762605
 
1677
  dataset:
1678
  type: mteb/amazon_massive_intent
1679
  name: MTEB MassiveIntentClassification (de)
1680
+ config: de
1681
+ split: test
1682
  metrics:
1683
  - type: accuracy
1684
  value: 40.39340954942838
 
1689
  dataset:
1690
  type: mteb/amazon_massive_intent
1691
  name: MTEB MassiveIntentClassification (el)
1692
+ config: el
1693
+ split: test
1694
  metrics:
1695
  - type: accuracy
1696
  value: 37.28648285137861
 
1701
  dataset:
1702
  type: mteb/amazon_massive_intent
1703
  name: MTEB MassiveIntentClassification (en)
1704
+ config: en
1705
+ split: test
1706
  metrics:
1707
  - type: accuracy
1708
  value: 58.080026899798256
 
1713
  dataset:
1714
  type: mteb/amazon_massive_intent
1715
  name: MTEB MassiveIntentClassification (es)
1716
+ config: es
1717
+ split: test
1718
  metrics:
1719
  - type: accuracy
1720
  value: 41.176866173503704
 
1725
  dataset:
1726
  type: mteb/amazon_massive_intent
1727
  name: MTEB MassiveIntentClassification (fa)
1728
+ config: fa
1729
+ split: test
1730
  metrics:
1731
  - type: accuracy
1732
  value: 36.422326832548755
 
1737
  dataset:
1738
  type: mteb/amazon_massive_intent
1739
  name: MTEB MassiveIntentClassification (fi)
1740
+ config: fi
1741
+ split: test
1742
  metrics:
1743
  - type: accuracy
1744
  value: 38.75588433086752
 
1749
  dataset:
1750
  type: mteb/amazon_massive_intent
1751
  name: MTEB MassiveIntentClassification (fr)
1752
+ config: fr
1753
+ split: test
1754
  metrics:
1755
  - type: accuracy
1756
  value: 43.67182246133153
 
1761
  dataset:
1762
  type: mteb/amazon_massive_intent
1763
  name: MTEB MassiveIntentClassification (he)
1764
+ config: he
1765
+ split: test
1766
  metrics:
1767
  - type: accuracy
1768
  value: 31.980497646267658
 
1773
  dataset:
1774
  type: mteb/amazon_massive_intent
1775
  name: MTEB MassiveIntentClassification (hi)
1776
+ config: hi
1777
+ split: test
1778
  metrics:
1779
  - type: accuracy
1780
  value: 28.039677202420982
 
1785
  dataset:
1786
  type: mteb/amazon_massive_intent
1787
  name: MTEB MassiveIntentClassification (hu)
1788
+ config: hu
1789
+ split: test
1790
  metrics:
1791
  - type: accuracy
1792
  value: 38.13718897108272
 
1797
  dataset:
1798
  type: mteb/amazon_massive_intent
1799
  name: MTEB MassiveIntentClassification (hy)
1800
+ config: hy
1801
+ split: test
1802
  metrics:
1803
  - type: accuracy
1804
  value: 26.05245460659045
 
1809
  dataset:
1810
  type: mteb/amazon_massive_intent
1811
  name: MTEB MassiveIntentClassification (id)
1812
+ config: id
1813
+ split: test
1814
  metrics:
1815
  - type: accuracy
1816
  value: 41.156691324815064
 
1821
  dataset:
1822
  type: mteb/amazon_massive_intent
1823
  name: MTEB MassiveIntentClassification (is)
1824
+ config: is
1825
+ split: test
1826
  metrics:
1827
  - type: accuracy
1828
  value: 38.62811028917284
 
1833
  dataset:
1834
  type: mteb/amazon_massive_intent
1835
  name: MTEB MassiveIntentClassification (it)
1836
+ config: it
1837
+ split: test
1838
  metrics:
1839
  - type: accuracy
1840
  value: 44.0383322125084
 
1845
  dataset:
1846
  type: mteb/amazon_massive_intent
1847
  name: MTEB MassiveIntentClassification (ja)
1848
+ config: ja
1849
+ split: test
1850
  metrics:
1851
  - type: accuracy
1852
  value: 46.20712844653666
 
1857
  dataset:
1858
  type: mteb/amazon_massive_intent
1859
  name: MTEB MassiveIntentClassification (jv)
1860
+ config: jv
1861
+ split: test
1862
  metrics:
1863
  - type: accuracy
1864
  value: 37.60591795561533
 
1869
  dataset:
1870
  type: mteb/amazon_massive_intent
1871
  name: MTEB MassiveIntentClassification (ka)
1872
+ config: ka
1873
+ split: test
1874
  metrics:
1875
  - type: accuracy
1876
  value: 24.47209145931405
 
1881
  dataset:
1882
  type: mteb/amazon_massive_intent
1883
  name: MTEB MassiveIntentClassification (km)
1884
+ config: km
1885
+ split: test
1886
  metrics:
1887
  - type: accuracy
1888
  value: 26.23739071956961
 
1893
  dataset:
1894
  type: mteb/amazon_massive_intent
1895
  name: MTEB MassiveIntentClassification (kn)
1896
+ config: kn
1897
+ split: test
1898
  metrics:
1899
  - type: accuracy
1900
  value: 17.831203765971754
 
1905
  dataset:
1906
  type: mteb/amazon_massive_intent
1907
  name: MTEB MassiveIntentClassification (ko)
1908
+ config: ko
1909
+ split: test
1910
  metrics:
1911
  - type: accuracy
1912
  value: 37.266308002689975
 
1917
  dataset:
1918
  type: mteb/amazon_massive_intent
1919
  name: MTEB MassiveIntentClassification (lv)
1920
+ config: lv
1921
+ split: test
1922
  metrics:
1923
  - type: accuracy
1924
  value: 40.93140551445864
 
1929
  dataset:
1930
  type: mteb/amazon_massive_intent
1931
  name: MTEB MassiveIntentClassification (ml)
1932
+ config: ml
1933
+ split: test
1934
  metrics:
1935
  - type: accuracy
1936
  value: 17.88500336247478
 
1941
  dataset:
1942
  type: mteb/amazon_massive_intent
1943
  name: MTEB MassiveIntentClassification (mn)
1944
+ config: mn
1945
+ split: test
1946
  metrics:
1947
  - type: accuracy
1948
  value: 32.975790181573636
 
1953
  dataset:
1954
  type: mteb/amazon_massive_intent
1955
  name: MTEB MassiveIntentClassification (ms)
1956
+ config: ms
1957
+ split: test
1958
  metrics:
1959
  - type: accuracy
1960
  value: 40.91123066577001
 
1965
  dataset:
1966
  type: mteb/amazon_massive_intent
1967
  name: MTEB MassiveIntentClassification (my)
1968
+ config: my
1969
+ split: test
1970
  metrics:
1971
  - type: accuracy
1972
  value: 17.834566240753194
 
1977
  dataset:
1978
  type: mteb/amazon_massive_intent
1979
  name: MTEB MassiveIntentClassification (nb)
1980
+ config: nb
1981
+ split: test
1982
  metrics:
1983
  - type: accuracy
1984
  value: 39.47881640887693
 
1989
  dataset:
1990
  type: mteb/amazon_massive_intent
1991
  name: MTEB MassiveIntentClassification (nl)
1992
+ config: nl
1993
+ split: test
1994
  metrics:
1995
  - type: accuracy
1996
  value: 41.76193678547412
 
2001
  dataset:
2002
  type: mteb/amazon_massive_intent
2003
  name: MTEB MassiveIntentClassification (pl)
2004
+ config: pl
2005
+ split: test
2006
  metrics:
2007
  - type: accuracy
2008
  value: 42.61936785474109
 
2013
  dataset:
2014
  type: mteb/amazon_massive_intent
2015
  name: MTEB MassiveIntentClassification (pt)
2016
+ config: pt
2017
+ split: test
2018
  metrics:
2019
  - type: accuracy
2020
  value: 44.54270342972427
 
2025
  dataset:
2026
  type: mteb/amazon_massive_intent
2027
  name: MTEB MassiveIntentClassification (ro)
2028
+ config: ro
2029
+ split: test
2030
  metrics:
2031
  - type: accuracy
2032
  value: 39.96973772696705
 
2037
  dataset:
2038
  type: mteb/amazon_massive_intent
2039
  name: MTEB MassiveIntentClassification (ru)
2040
+ config: ru
2041
+ split: test
2042
  metrics:
2043
  - type: accuracy
2044
  value: 37.461331540013454
 
2049
  dataset:
2050
  type: mteb/amazon_massive_intent
2051
  name: MTEB MassiveIntentClassification (sl)
2052
+ config: sl
2053
+ split: test
2054
  metrics:
2055
  - type: accuracy
2056
  value: 38.28850033624748
 
2061
  dataset:
2062
  type: mteb/amazon_massive_intent
2063
  name: MTEB MassiveIntentClassification (sq)
2064
+ config: sq
2065
+ split: test
2066
  metrics:
2067
  - type: accuracy
2068
  value: 40.95494283792872
 
2073
  dataset:
2074
  type: mteb/amazon_massive_intent
2075
  name: MTEB MassiveIntentClassification (sv)
2076
+ config: sv
2077
+ split: test
2078
  metrics:
2079
  - type: accuracy
2080
  value: 41.85272360457296
 
2085
  dataset:
2086
  type: mteb/amazon_massive_intent
2087
  name: MTEB MassiveIntentClassification (sw)
2088
+ config: sw
2089
+ split: test
2090
  metrics:
2091
  - type: accuracy
2092
  value: 38.328850033624754
 
2097
  dataset:
2098
  type: mteb/amazon_massive_intent
2099
  name: MTEB MassiveIntentClassification (ta)
2100
+ config: ta
2101
+ split: test
2102
  metrics:
2103
  - type: accuracy
2104
  value: 19.031607262945528
 
2109
  dataset:
2110
  type: mteb/amazon_massive_intent
2111
  name: MTEB MassiveIntentClassification (te)
2112
+ config: te
2113
+ split: test
2114
  metrics:
2115
  - type: accuracy
2116
  value: 19.38466711499664
 
2121
  dataset:
2122
  type: mteb/amazon_massive_intent
2123
  name: MTEB MassiveIntentClassification (th)
2124
+ config: th
2125
+ split: test
2126
  metrics:
2127
  - type: accuracy
2128
  value: 34.088769334229994
 
2133
  dataset:
2134
  type: mteb/amazon_massive_intent
2135
  name: MTEB MassiveIntentClassification (tl)
2136
+ config: tl
2137
+ split: test
2138
  metrics:
2139
  - type: accuracy
2140
  value: 40.285810356422324
 
2145
  dataset:
2146
  type: mteb/amazon_massive_intent
2147
  name: MTEB MassiveIntentClassification (tr)
2148
+ config: tr
2149
+ split: test
2150
  metrics:
2151
  - type: accuracy
2152
  value: 38.860121049092136
 
2157
  dataset:
2158
  type: mteb/amazon_massive_intent
2159
  name: MTEB MassiveIntentClassification (ur)
2160
+ config: ur
2161
+ split: test
2162
  metrics:
2163
  - type: accuracy
2164
  value: 27.834566240753194
 
2169
  dataset:
2170
  type: mteb/amazon_massive_intent
2171
  name: MTEB MassiveIntentClassification (vi)
2172
+ config: vi
2173
+ split: test
2174
  metrics:
2175
  - type: accuracy
2176
  value: 38.70544720914593
 
2181
  dataset:
2182
  type: mteb/amazon_massive_intent
2183
  name: MTEB MassiveIntentClassification (zh-CN)
2184
+ config: zh-CN
2185
+ split: test
2186
  metrics:
2187
  - type: accuracy
2188
  value: 45.78009414929387
 
2193
  dataset:
2194
  type: mteb/amazon_massive_intent
2195
  name: MTEB MassiveIntentClassification (zh-TW)
2196
+ config: zh-TW
2197
+ split: test
2198
  metrics:
2199
  - type: accuracy
2200
  value: 42.32010759919301
 
2205
  dataset:
2206
  type: mteb/amazon_massive_scenario
2207
  name: MTEB MassiveScenarioClassification (af)
2208
+ config: af
2209
+ split: test
2210
  metrics:
2211
  - type: accuracy
2212
  value: 40.24546065904506
 
2217
  dataset:
2218
  type: mteb/amazon_massive_scenario
2219
  name: MTEB MassiveScenarioClassification (am)
2220
+ config: am
2221
+ split: test
2222
  metrics:
2223
  - type: accuracy
2224
  value: 25.68930733019502
 
2229
  dataset:
2230
  type: mteb/amazon_massive_scenario
2231
  name: MTEB MassiveScenarioClassification (ar)
2232
+ config: ar
2233
+ split: test
2234
  metrics:
2235
  - type: accuracy
2236
  value: 32.39744451916611
 
2241
  dataset:
2242
  type: mteb/amazon_massive_scenario
2243
  name: MTEB MassiveScenarioClassification (az)
2244
+ config: az
2245
+ split: test
2246
  metrics:
2247
  - type: accuracy
2248
  value: 40.53127101546738
 
2253
  dataset:
2254
  type: mteb/amazon_massive_scenario
2255
  name: MTEB MassiveScenarioClassification (bn)
2256
+ config: bn
2257
+ split: test
2258
  metrics:
2259
  - type: accuracy
2260
  value: 27.23268325487559
 
2265
  dataset:
2266
  type: mteb/amazon_massive_scenario
2267
  name: MTEB MassiveScenarioClassification (cy)
2268
+ config: cy
2269
+ split: test
2270
  metrics:
2271
  - type: accuracy
2272
  value: 38.69872225958305
 
2277
  dataset:
2278
  type: mteb/amazon_massive_scenario
2279
  name: MTEB MassiveScenarioClassification (da)
2280
+ config: da
2281
+ split: test
2282
  metrics:
2283
  - type: accuracy
2284
  value: 44.75453934095494
 
2289
  dataset:
2290
  type: mteb/amazon_massive_scenario
2291
  name: MTEB MassiveScenarioClassification (de)
2292
+ config: de
2293
+ split: test
2294
  metrics:
2295
  - type: accuracy
2296
  value: 41.355077336919976
 
2301
  dataset:
2302
  type: mteb/amazon_massive_scenario
2303
  name: MTEB MassiveScenarioClassification (el)
2304
+ config: el
2305
+ split: test
2306
  metrics:
2307
  - type: accuracy
2308
  value: 38.43981170141224
 
2313
  dataset:
2314
  type: mteb/amazon_massive_scenario
2315
  name: MTEB MassiveScenarioClassification (en)
2316
+ config: en
2317
+ split: test
2318
  metrics:
2319
  - type: accuracy
2320
  value: 66.33826496301278
 
2325
  dataset:
2326
  type: mteb/amazon_massive_scenario
2327
  name: MTEB MassiveScenarioClassification (es)
2328
+ config: es
2329
+ split: test
2330
  metrics:
2331
  - type: accuracy
2332
  value: 44.17955615332885
 
2337
  dataset:
2338
  type: mteb/amazon_massive_scenario
2339
  name: MTEB MassiveScenarioClassification (fa)
2340
+ config: fa
2341
+ split: test
2342
  metrics:
2343
  - type: accuracy
2344
  value: 34.82851378614661
 
2349
  dataset:
2350
  type: mteb/amazon_massive_scenario
2351
  name: MTEB MassiveScenarioClassification (fi)
2352
+ config: fi
2353
+ split: test
2354
  metrics:
2355
  - type: accuracy
2356
  value: 40.561533288500335
 
2361
  dataset:
2362
  type: mteb/amazon_massive_scenario
2363
  name: MTEB MassiveScenarioClassification (fr)
2364
+ config: fr
2365
+ split: test
2366
  metrics:
2367
  - type: accuracy
2368
  value: 45.917955615332886
 
2373
  dataset:
2374
  type: mteb/amazon_massive_scenario
2375
  name: MTEB MassiveScenarioClassification (he)
2376
+ config: he
2377
+ split: test
2378
  metrics:
2379
  - type: accuracy
2380
  value: 32.08473436449227
 
2385
  dataset:
2386
  type: mteb/amazon_massive_scenario
2387
  name: MTEB MassiveScenarioClassification (hi)
2388
+ config: hi
2389
+ split: test
2390
  metrics:
2391
  - type: accuracy
2392
  value: 28.369199731002016
 
2397
  dataset:
2398
  type: mteb/amazon_massive_scenario
2399
  name: MTEB MassiveScenarioClassification (hu)
2400
+ config: hu
2401
+ split: test
2402
  metrics:
2403
  - type: accuracy
2404
  value: 39.49226630800269
 
2409
  dataset:
2410
  type: mteb/amazon_massive_scenario
2411
  name: MTEB MassiveScenarioClassification (hy)
2412
+ config: hy
2413
+ split: test
2414
  metrics:
2415
  - type: accuracy
2416
  value: 25.904505716207133
 
2421
  dataset:
2422
  type: mteb/amazon_massive_scenario
2423
  name: MTEB MassiveScenarioClassification (id)
2424
+ config: id
2425
+ split: test
2426
  metrics:
2427
  - type: accuracy
2428
  value: 40.95830531271016
 
2433
  dataset:
2434
  type: mteb/amazon_massive_scenario
2435
  name: MTEB MassiveScenarioClassification (is)
2436
+ config: is
2437
+ split: test
2438
  metrics:
2439
  - type: accuracy
2440
  value: 38.564223268325485
 
2445
  dataset:
2446
  type: mteb/amazon_massive_scenario
2447
  name: MTEB MassiveScenarioClassification (it)
2448
+ config: it
2449
+ split: test
2450
  metrics:
2451
  - type: accuracy
2452
  value: 46.58708809683928
 
2457
  dataset:
2458
  type: mteb/amazon_massive_scenario
2459
  name: MTEB MassiveScenarioClassification (ja)
2460
+ config: ja
2461
+ split: test
2462
  metrics:
2463
  - type: accuracy
2464
  value: 46.24747814391393
 
2469
  dataset:
2470
  type: mteb/amazon_massive_scenario
2471
  name: MTEB MassiveScenarioClassification (jv)
2472
+ config: jv
2473
+ split: test
2474
  metrics:
2475
  - type: accuracy
2476
  value: 39.6570275722932
 
2481
  dataset:
2482
  type: mteb/amazon_massive_scenario
2483
  name: MTEB MassiveScenarioClassification (ka)
2484
+ config: ka
2485
+ split: test
2486
  metrics:
2487
  - type: accuracy
2488
  value: 25.279085406859448
 
2493
  dataset:
2494
  type: mteb/amazon_massive_scenario
2495
  name: MTEB MassiveScenarioClassification (km)
2496
+ config: km
2497
+ split: test
2498
  metrics:
2499
  - type: accuracy
2500
  value: 28.97108271687962
 
2505
  dataset:
2506
  type: mteb/amazon_massive_scenario
2507
  name: MTEB MassiveScenarioClassification (kn)
2508
+ config: kn
2509
+ split: test
2510
  metrics:
2511
  - type: accuracy
2512
  value: 19.27370544720915
 
2517
  dataset:
2518
  type: mteb/amazon_massive_scenario
2519
  name: MTEB MassiveScenarioClassification (ko)
2520
+ config: ko
2521
+ split: test
2522
  metrics:
2523
  - type: accuracy
2524
  value: 35.729657027572294
 
2529
  dataset:
2530
  type: mteb/amazon_massive_scenario
2531
  name: MTEB MassiveScenarioClassification (lv)
2532
+ config: lv
2533
+ split: test
2534
  metrics:
2535
  - type: accuracy
2536
  value: 39.57296570275723
 
2541
  dataset:
2542
  type: mteb/amazon_massive_scenario
2543
  name: MTEB MassiveScenarioClassification (ml)
2544
+ config: ml
2545
+ split: test
2546
  metrics:
2547
  - type: accuracy
2548
  value: 19.895763281775388
 
2553
  dataset:
2554
  type: mteb/amazon_massive_scenario
2555
  name: MTEB MassiveScenarioClassification (mn)
2556
+ config: mn
2557
+ split: test
2558
  metrics:
2559
  - type: accuracy
2560
  value: 32.431069266980494
 
2565
  dataset:
2566
  type: mteb/amazon_massive_scenario
2567
  name: MTEB MassiveScenarioClassification (ms)
2568
+ config: ms
2569
+ split: test
2570
  metrics:
2571
  - type: accuracy
2572
  value: 42.32347007397445
 
2577
  dataset:
2578
  type: mteb/amazon_massive_scenario
2579
  name: MTEB MassiveScenarioClassification (my)
2580
+ config: my
2581
+ split: test
2582
  metrics:
2583
  - type: accuracy
2584
  value: 20.864156018829856
 
2589
  dataset:
2590
  type: mteb/amazon_massive_scenario
2591
  name: MTEB MassiveScenarioClassification (nb)
2592
+ config: nb
2593
+ split: test
2594
  metrics:
2595
  - type: accuracy
2596
  value: 40.47074646940148
 
2601
  dataset:
2602
  type: mteb/amazon_massive_scenario
2603
  name: MTEB MassiveScenarioClassification (nl)
2604
+ config: nl
2605
+ split: test
2606
  metrics:
2607
  - type: accuracy
2608
  value: 43.591123066577
 
2613
  dataset:
2614
  type: mteb/amazon_massive_scenario
2615
  name: MTEB MassiveScenarioClassification (pl)
2616
+ config: pl
2617
+ split: test
2618
  metrics:
2619
  - type: accuracy
2620
  value: 41.876260928043045
 
2625
  dataset:
2626
  type: mteb/amazon_massive_scenario
2627
  name: MTEB MassiveScenarioClassification (pt)
2628
+ config: pt
2629
+ split: test
2630
  metrics:
2631
  - type: accuracy
2632
  value: 46.30800268997983
 
2637
  dataset:
2638
  type: mteb/amazon_massive_scenario
2639
  name: MTEB MassiveScenarioClassification (ro)
2640
+ config: ro
2641
+ split: test
2642
  metrics:
2643
  - type: accuracy
2644
  value: 42.525218560860786
 
2649
  dataset:
2650
  type: mteb/amazon_massive_scenario
2651
  name: MTEB MassiveScenarioClassification (ru)
2652
+ config: ru
2653
+ split: test
2654
  metrics:
2655
  - type: accuracy
2656
  value: 35.94821788836584
 
2661
  dataset:
2662
  type: mteb/amazon_massive_scenario
2663
  name: MTEB MassiveScenarioClassification (sl)
2664
+ config: sl
2665
+ split: test
2666
  metrics:
2667
  - type: accuracy
2668
  value: 38.69199731002017
 
2673
  dataset:
2674
  type: mteb/amazon_massive_scenario
2675
  name: MTEB MassiveScenarioClassification (sq)
2676
+ config: sq
2677
+ split: test
2678
  metrics:
2679
  - type: accuracy
2680
  value: 40.474108944182916
 
2685
  dataset:
2686
  type: mteb/amazon_massive_scenario
2687
  name: MTEB MassiveScenarioClassification (sv)
2688
+ config: sv
2689
+ split: test
2690
  metrics:
2691
  - type: accuracy
2692
  value: 41.523201075991935
 
2697
  dataset:
2698
  type: mteb/amazon_massive_scenario
2699
  name: MTEB MassiveScenarioClassification (sw)
2700
+ config: sw
2701
+ split: test
2702
  metrics:
2703
  - type: accuracy
2704
  value: 39.54942837928716
 
2709
  dataset:
2710
  type: mteb/amazon_massive_scenario
2711
  name: MTEB MassiveScenarioClassification (ta)
2712
+ config: ta
2713
+ split: test
2714
  metrics:
2715
  - type: accuracy
2716
  value: 22.8782784129119
 
2721
  dataset:
2722
  type: mteb/amazon_massive_scenario
2723
  name: MTEB MassiveScenarioClassification (te)
2724
+ config: te
2725
+ split: test
2726
  metrics:
2727
  - type: accuracy
2728
  value: 20.51445864156019
 
2733
  dataset:
2734
  type: mteb/amazon_massive_scenario
2735
  name: MTEB MassiveScenarioClassification (th)
2736
+ config: th
2737
+ split: test
2738
  metrics:
2739
  - type: accuracy
2740
  value: 34.92602555480834
 
2745
  dataset:
2746
  type: mteb/amazon_massive_scenario
2747
  name: MTEB MassiveScenarioClassification (tl)
2748
+ config: tl
2749
+ split: test
2750
  metrics:
2751
  - type: accuracy
2752
  value: 40.74983187626093
 
2757
  dataset:
2758
  type: mteb/amazon_massive_scenario
2759
  name: MTEB MassiveScenarioClassification (tr)
2760
+ config: tr
2761
+ split: test
2762
  metrics:
2763
  - type: accuracy
2764
  value: 39.06859448554136
 
2769
  dataset:
2770
  type: mteb/amazon_massive_scenario
2771
  name: MTEB MassiveScenarioClassification (ur)
2772
+ config: ur
2773
+ split: test
2774
  metrics:
2775
  - type: accuracy
2776
  value: 29.747814391392062
 
2781
  dataset:
2782
  type: mteb/amazon_massive_scenario
2783
  name: MTEB MassiveScenarioClassification (vi)
2784
+ config: vi
2785
+ split: test
2786
  metrics:
2787
  - type: accuracy
2788
  value: 38.02286482851379
 
2793
  dataset:
2794
  type: mteb/amazon_massive_scenario
2795
  name: MTEB MassiveScenarioClassification (zh-CN)
2796
+ config: zh-CN
2797
+ split: test
2798
  metrics:
2799
  - type: accuracy
2800
  value: 48.550773369199725
 
2805
  dataset:
2806
  type: mteb/amazon_massive_scenario
2807
  name: MTEB MassiveScenarioClassification (zh-TW)
2808
+ config: zh-TW
2809
+ split: test
2810
  metrics:
2811
  - type: accuracy
2812
  value: 45.17821116341628
 
2817
  dataset:
2818
  type: mteb/medrxiv-clustering-p2p
2819
  name: MTEB MedrxivClusteringP2P
2820
+ config: default
2821
+ split: test
2822
  metrics:
2823
  - type: v_measure
2824
  value: 28.301902023313875
 
2827
  dataset:
2828
  type: mteb/medrxiv-clustering-s2s
2829
  name: MTEB MedrxivClusteringS2S
2830
+ config: default
2831
+ split: test
2832
  metrics:
2833
  - type: v_measure
2834
  value: 24.932123582259287
 
2837
  dataset:
2838
  type: mteb/mind_small
2839
  name: MTEB MindSmallReranking
2840
+ config: default
2841
+ split: test
2842
  metrics:
2843
  - type: map
2844
  value: 29.269341041468326
 
2849
  dataset:
2850
  type: nfcorpus
2851
  name: MTEB NFCorpus
2852
+ config: default
2853
+ split: test
2854
  metrics:
2855
  - type: map_at_1
2856
  value: 1.2269999999999999
 
2905
  dataset:
2906
  type: nq
2907
  name: MTEB NQ
2908
+ config: default
2909
+ split: test
2910
  metrics:
2911
  - type: map_at_1
2912
  value: 3.515
 
2961
  dataset:
2962
  type: quora
2963
  name: MTEB QuoraRetrieval
2964
+ config: default
2965
+ split: test
2966
  metrics:
2967
  - type: map_at_1
2968
  value: 61.697
 
3017
  dataset:
3018
  type: mteb/reddit-clustering
3019
  name: MTEB RedditClustering
3020
+ config: default
3021
+ split: test
3022
  metrics:
3023
  - type: v_measure
3024
  value: 33.75741018380938
 
3027
  dataset:
3028
  type: mteb/reddit-clustering-p2p
3029
  name: MTEB RedditClusteringP2P
3030
+ config: default
3031
+ split: test
3032
  metrics:
3033
  - type: v_measure
3034
  value: 41.00799910099266
 
3037
  dataset:
3038
  type: scidocs
3039
  name: MTEB SCIDOCS
3040
+ config: default
3041
+ split: test
3042
  metrics:
3043
  - type: map_at_1
3044
  value: 1.72
 
3093
  dataset:
3094
  type: mteb/sickr-sts
3095
  name: MTEB SICK-R
3096
+ config: default
3097
+ split: test
3098
  metrics:
3099
  - type: cos_sim_pearson
3100
  value: 80.96286245858941
 
3113
  dataset:
3114
  type: mteb/sts12-sts
3115
  name: MTEB STS12
3116
+ config: default
3117
+ split: test
3118
  metrics:
3119
  - type: cos_sim_pearson
3120
  value: 80.20938796088339
 
3133
  dataset:
3134
  type: mteb/sts13-sts
3135
  name: MTEB STS13
3136
+ config: default
3137
+ split: test
3138
  metrics:
3139
  - type: cos_sim_pearson
3140
  value: 76.401935081936
 
3153
  dataset:
3154
  type: mteb/sts14-sts
3155
  name: MTEB STS14
3156
+ config: default
3157
+ split: test
3158
  metrics:
3159
  - type: cos_sim_pearson
3160
  value: 75.35551963935667
 
3173
  dataset:
3174
  type: mteb/sts15-sts
3175
  name: MTEB STS15
3176
+ config: default
3177
+ split: test
3178
  metrics:
3179
  - type: cos_sim_pearson
3180
  value: 79.05293131911803
 
3193
  dataset:
3194
  type: mteb/sts16-sts
3195
  name: MTEB STS16
3196
+ config: default
3197
+ split: test
3198
  metrics:
3199
  - type: cos_sim_pearson
3200
  value: 76.04750373932828
 
3213
  dataset:
3214
  type: mteb/sts17-crosslingual-sts
3215
  name: MTEB STS17 (ko-ko)
3216
+ config: ko-ko
3217
+ split: test
3218
  metrics:
3219
  - type: cos_sim_pearson
3220
  value: 43.0464619152799
 
3233
  dataset:
3234
  type: mteb/sts17-crosslingual-sts
3235
  name: MTEB STS17 (ar-ar)
3236
+ config: ar-ar
3237
+ split: test
3238
  metrics:
3239
  - type: cos_sim_pearson
3240
  value: 53.27469278912148
 
3253
  dataset:
3254
  type: mteb/sts17-crosslingual-sts
3255
  name: MTEB STS17 (en-ar)
3256
+ config: en-ar
3257
+ split: test
3258
  metrics:
3259
  - type: cos_sim_pearson
3260
  value: 1.5482997790039945
 
3273
  dataset:
3274
  type: mteb/sts17-crosslingual-sts
3275
  name: MTEB STS17 (en-de)
3276
+ config: en-de
3277
+ split: test
3278
  metrics:
3279
  - type: cos_sim_pearson
3280
  value: 27.5420218362265
 
3293
  dataset:
3294
  type: mteb/sts17-crosslingual-sts
3295
  name: MTEB STS17 (en-en)
3296
+ config: en-en
3297
+ split: test
3298
  metrics:
3299
  - type: cos_sim_pearson
3300
  value: 85.32029757646663
 
3313
  dataset:
3314
  type: mteb/sts17-crosslingual-sts
3315
  name: MTEB STS17 (en-tr)
3316
+ config: en-tr
3317
+ split: test
3318
  metrics:
3319
  - type: cos_sim_pearson
3320
  value: 4.37162299241808
 
3333
  dataset:
3334
  type: mteb/sts17-crosslingual-sts
3335
  name: MTEB STS17 (es-en)
3336
+ config: es-en
3337
+ split: test
3338
  metrics:
3339
  - type: cos_sim_pearson
3340
  value: 20.306030448858603
 
3353
  dataset:
3354
  type: mteb/sts17-crosslingual-sts
3355
  name: MTEB STS17 (es-es)
3356
+ config: es-es
3357
+ split: test
3358
  metrics:
3359
  - type: cos_sim_pearson
3360
  value: 66.81873207478459
 
3373
  dataset:
3374
  type: mteb/sts17-crosslingual-sts
3375
  name: MTEB STS17 (fr-en)
3376
+ config: fr-en
3377
+ split: test
3378
  metrics:
3379
  - type: cos_sim_pearson
3380
  value: 21.366487281202602
 
3393
  dataset:
3394
  type: mteb/sts17-crosslingual-sts
3395
  name: MTEB STS17 (it-en)
3396
+ config: it-en
3397
+ split: test
3398
  metrics:
3399
  - type: cos_sim_pearson
3400
  value: 20.73153177251085
 
3413
  dataset:
3414
  type: mteb/sts17-crosslingual-sts
3415
  name: MTEB STS17 (nl-en)
3416
+ config: nl-en
3417
+ split: test
3418
  metrics:
3419
  - type: cos_sim_pearson
3420
  value: 26.618435024084253
 
3433
  dataset:
3434
  type: mteb/sts22-crosslingual-sts
3435
  name: MTEB STS22 (en)
3436
+ config: en
3437
+ split: test
3438
  metrics:
3439
  - type: cos_sim_pearson
3440
  value: 59.17638344661753
 
3453
  dataset:
3454
  type: mteb/sts22-crosslingual-sts
3455
  name: MTEB STS22 (de)
3456
+ config: de
3457
+ split: test
3458
  metrics:
3459
  - type: cos_sim_pearson
3460
  value: 10.322254716987457
 
3473
  dataset:
3474
  type: mteb/sts22-crosslingual-sts
3475
  name: MTEB STS22 (es)
3476
+ config: es
3477
+ split: test
3478
  metrics:
3479
  - type: cos_sim_pearson
3480
  value: 43.38031880545056
 
3493
  dataset:
3494
  type: mteb/sts22-crosslingual-sts
3495
  name: MTEB STS22 (pl)
3496
+ config: pl
3497
+ split: test
3498
  metrics:
3499
  - type: cos_sim_pearson
3500
  value: 4.291290504363136
 
3513
  dataset:
3514
  type: mteb/sts22-crosslingual-sts
3515
  name: MTEB STS22 (tr)
3516
+ config: tr
3517
+ split: test
3518
  metrics:
3519
  - type: cos_sim_pearson
3520
  value: 4.102739498555817
 
3533
  dataset:
3534
  type: mteb/sts22-crosslingual-sts
3535
  name: MTEB STS22 (ar)
3536
+ config: ar
3537
+ split: test
3538
  metrics:
3539
  - type: cos_sim_pearson
3540
  value: 2.38765395226737
 
3553
  dataset:
3554
  type: mteb/sts22-crosslingual-sts
3555
  name: MTEB STS22 (ru)
3556
+ config: ru
3557
+ split: test
3558
  metrics:
3559
  - type: cos_sim_pearson
3560
  value: 7.6735490672676345
 
3573
  dataset:
3574
  type: mteb/sts22-crosslingual-sts
3575
  name: MTEB STS22 (zh)
3576
+ config: zh
3577
+ split: test
3578
  metrics:
3579
  - type: cos_sim_pearson
3580
  value: 0.06167614416104335
 
3593
  dataset:
3594
  type: mteb/sts22-crosslingual-sts
3595
  name: MTEB STS22 (fr)
3596
+ config: fr
3597
+ split: test
3598
  metrics:
3599
  - type: cos_sim_pearson
3600
  value: 53.19490347682836
 
3613
  dataset:
3614
  type: mteb/sts22-crosslingual-sts
3615
  name: MTEB STS22 (de-en)
3616
+ config: de-en
3617
+ split: test
3618
  metrics:
3619
  - type: cos_sim_pearson
3620
  value: 51.151158530122146
 
3633
  dataset:
3634
  type: mteb/sts22-crosslingual-sts
3635
  name: MTEB STS22 (es-en)
3636
+ config: es-en
3637
+ split: test
3638
  metrics:
3639
  - type: cos_sim_pearson
3640
  value: 30.36194885126792
 
3653
  dataset:
3654
  type: mteb/sts22-crosslingual-sts
3655
  name: MTEB STS22 (it)
3656
+ config: it
3657
+ split: test
3658
  metrics:
3659
  - type: cos_sim_pearson
3660
  value: 35.23883630335275
 
3673
  dataset:
3674
  type: mteb/sts22-crosslingual-sts
3675
  name: MTEB STS22 (pl-en)
3676
+ config: pl-en
3677
+ split: test
3678
  metrics:
3679
  - type: cos_sim_pearson
3680
  value: 19.809302548119547
 
3693
  dataset:
3694
  type: mteb/sts22-crosslingual-sts
3695
  name: MTEB STS22 (zh-en)
3696
+ config: zh-en
3697
+ split: test
3698
  metrics:
3699
  - type: cos_sim_pearson
3700
  value: 20.393500955410488
 
3713
  dataset:
3714
  type: mteb/sts22-crosslingual-sts
3715
  name: MTEB STS22 (es-it)
3716
+ config: es-it
3717
+ split: test
3718
  metrics:
3719
  - type: cos_sim_pearson
3720
  value: 36.58919983075148
 
3733
  dataset:
3734
  type: mteb/sts22-crosslingual-sts
3735
  name: MTEB STS22 (de-fr)
3736
+ config: de-fr
3737
+ split: test
3738
  metrics:
3739
  - type: cos_sim_pearson
3740
  value: 26.350936227950083
 
3753
  dataset:
3754
  type: mteb/sts22-crosslingual-sts
3755
  name: MTEB STS22 (de-pl)
3756
+ config: de-pl
3757
+ split: test
3758
  metrics:
3759
  - type: cos_sim_pearson
3760
  value: 20.056269198600322
 
3773
  dataset:
3774
  type: mteb/sts22-crosslingual-sts
3775
  name: MTEB STS22 (fr-pl)
3776
+ config: fr-pl
3777
+ split: test
3778
  metrics:
3779
  - type: cos_sim_pearson
3780
  value: 19.563740271419395
 
3793
  dataset:
3794
  type: mteb/stsbenchmark-sts
3795
  name: MTEB STSBenchmark
3796
+ config: default
3797
+ split: test
3798
  metrics:
3799
  - type: cos_sim_pearson
3800
  value: 80.00905671833966
 
3813
  dataset:
3814
  type: mteb/scidocs-reranking
3815
  name: MTEB SciDocsRR
3816
+ config: default
3817
+ split: test
3818
  metrics:
3819
  - type: map
3820
  value: 68.35710819755543
 
3825
  dataset:
3826
  type: scifact
3827
  name: MTEB SciFact
3828
+ config: default
3829
+ split: test
3830
  metrics:
3831
  - type: map_at_1
3832
  value: 21.556
 
3881
  dataset:
3882
  type: mteb/sprintduplicatequestions-pairclassification
3883
  name: MTEB SprintDuplicateQuestions
3884
+ config: default
3885
+ split: test
3886
  metrics:
3887
  - type: cos_sim_accuracy
3888
  value: 99.49306930693069
 
3935
  dataset:
3936
  type: mteb/stackexchange-clustering
3937
  name: MTEB StackExchangeClustering
3938
+ config: default
3939
+ split: test
3940
  metrics:
3941
  - type: v_measure
3942
  value: 44.59127540530939
 
3945
  dataset:
3946
  type: mteb/stackexchange-clustering-p2p
3947
  name: MTEB StackExchangeClusteringP2P
3948
+ config: default
3949
+ split: test
3950
  metrics:
3951
  - type: v_measure
3952
  value: 28.230204578753636
 
3955
  dataset:
3956
  type: mteb/stackoverflowdupquestions-reranking
3957
  name: MTEB StackOverflowDupQuestions
3958
+ config: default
3959
+ split: test
3960
  metrics:
3961
  - type: map
3962
  value: 39.96520488022785
 
3967
  dataset:
3968
  type: mteb/summeval
3969
  name: MTEB SummEval
3970
+ config: default
3971
+ split: test
3972
  metrics:
3973
  - type: cos_sim_pearson
3974
  value: 30.56303767714449
 
3983
  dataset:
3984
  type: trec-covid
3985
  name: MTEB TRECCOVID
3986
+ config: default
3987
+ split: test
3988
  metrics:
3989
  - type: map_at_1
3990
  value: 0.11299999999999999
 
4039
  dataset:
4040
  type: webis-touche2020
4041
  name: MTEB Touche2020
4042
+ config: default
4043
+ split: test
4044
  metrics:
4045
  - type: map_at_1
4046
  value: 0.645
 
4095
  dataset:
4096
  type: mteb/toxic_conversations_50k
4097
  name: MTEB ToxicConversationsClassification
4098
+ config: default
4099
+ split: test
4100
  metrics:
4101
  - type: accuracy
4102
  value: 62.7862
 
4109
  dataset:
4110
  type: mteb/tweet_sentiment_extraction
4111
  name: MTEB TweetSentimentExtractionClassification
4112
+ config: default
4113
+ split: test
4114
  metrics:
4115
  - type: accuracy
4116
  value: 54.821731748726656
 
4121
  dataset:
4122
  type: mteb/twentynewsgroups-clustering
4123
  name: MTEB TwentyNewsgroupsClustering
4124
+ config: default
4125
+ split: test
4126
  metrics:
4127
  - type: v_measure
4128
  value: 28.24295128553035
 
4131
  dataset:
4132
  type: mteb/twittersemeval2015-pairclassification
4133
  name: MTEB TwitterSemEval2015
4134
+ config: default
4135
+ split: test
4136
  metrics:
4137
  - type: cos_sim_accuracy
4138
  value: 81.5640460153782
 
4185
  dataset:
4186
  type: mteb/twitterurlcorpus-pairclassification
4187
  name: MTEB TwitterURLCorpus
4188
+ config: default
4189
+ split: test
4190
  metrics:
4191
  - type: cos_sim_accuracy
4192
  value: 86.63018589668955