Muennighoff
commited on
Commit
•
ee2f697
1
Parent(s):
54862a5
Update MTEB meta
Browse files
README.md
CHANGED
@@ -13,6 +13,8 @@ model-index:
|
|
13 |
dataset:
|
14 |
type: mteb/amazon_counterfactual
|
15 |
name: MTEB AmazonCounterfactualClassification (en)
|
|
|
|
|
16 |
metrics:
|
17 |
- type: accuracy
|
18 |
value: 65.88059701492537
|
@@ -25,6 +27,8 @@ model-index:
|
|
25 |
dataset:
|
26 |
type: mteb/amazon_counterfactual
|
27 |
name: MTEB AmazonCounterfactualClassification (de)
|
|
|
|
|
28 |
metrics:
|
29 |
- type: accuracy
|
30 |
value: 59.07922912205568
|
@@ -37,6 +41,8 @@ model-index:
|
|
37 |
dataset:
|
38 |
type: mteb/amazon_counterfactual
|
39 |
name: MTEB AmazonCounterfactualClassification (en-ext)
|
|
|
|
|
40 |
metrics:
|
41 |
- type: accuracy
|
42 |
value: 64.91754122938531
|
@@ -49,6 +55,8 @@ model-index:
|
|
49 |
dataset:
|
50 |
type: mteb/amazon_counterfactual
|
51 |
name: MTEB AmazonCounterfactualClassification (ja)
|
|
|
|
|
52 |
metrics:
|
53 |
- type: accuracy
|
54 |
value: 56.423982869378996
|
@@ -61,6 +69,8 @@ model-index:
|
|
61 |
dataset:
|
62 |
type: mteb/amazon_polarity
|
63 |
name: MTEB AmazonPolarityClassification
|
|
|
|
|
64 |
metrics:
|
65 |
- type: accuracy
|
66 |
value: 74.938225
|
@@ -73,6 +83,8 @@ model-index:
|
|
73 |
dataset:
|
74 |
type: mteb/amazon_reviews_multi
|
75 |
name: MTEB AmazonReviewsClassification (en)
|
|
|
|
|
76 |
metrics:
|
77 |
- type: accuracy
|
78 |
value: 35.098
|
@@ -83,6 +95,8 @@ model-index:
|
|
83 |
dataset:
|
84 |
type: mteb/amazon_reviews_multi
|
85 |
name: MTEB AmazonReviewsClassification (de)
|
|
|
|
|
86 |
metrics:
|
87 |
- type: accuracy
|
88 |
value: 24.516
|
@@ -93,6 +107,8 @@ model-index:
|
|
93 |
dataset:
|
94 |
type: mteb/amazon_reviews_multi
|
95 |
name: MTEB AmazonReviewsClassification (es)
|
|
|
|
|
96 |
metrics:
|
97 |
- type: accuracy
|
98 |
value: 29.097999999999995
|
@@ -103,6 +119,8 @@ model-index:
|
|
103 |
dataset:
|
104 |
type: mteb/amazon_reviews_multi
|
105 |
name: MTEB AmazonReviewsClassification (fr)
|
|
|
|
|
106 |
metrics:
|
107 |
- type: accuracy
|
108 |
value: 27.395999999999997
|
@@ -113,6 +131,8 @@ model-index:
|
|
113 |
dataset:
|
114 |
type: mteb/amazon_reviews_multi
|
115 |
name: MTEB AmazonReviewsClassification (ja)
|
|
|
|
|
116 |
metrics:
|
117 |
- type: accuracy
|
118 |
value: 21.724
|
@@ -123,6 +143,8 @@ model-index:
|
|
123 |
dataset:
|
124 |
type: mteb/amazon_reviews_multi
|
125 |
name: MTEB AmazonReviewsClassification (zh)
|
|
|
|
|
126 |
metrics:
|
127 |
- type: accuracy
|
128 |
value: 23.976
|
@@ -133,6 +155,8 @@ model-index:
|
|
133 |
dataset:
|
134 |
type: arguana
|
135 |
name: MTEB ArguAna
|
|
|
|
|
136 |
metrics:
|
137 |
- type: map_at_1
|
138 |
value: 13.442000000000002
|
@@ -187,6 +211,8 @@ model-index:
|
|
187 |
dataset:
|
188 |
type: mteb/arxiv-clustering-p2p
|
189 |
name: MTEB ArxivClusteringP2P
|
|
|
|
|
190 |
metrics:
|
191 |
- type: v_measure
|
192 |
value: 34.742482477870766
|
@@ -195,6 +221,8 @@ model-index:
|
|
195 |
dataset:
|
196 |
type: mteb/arxiv-clustering-s2s
|
197 |
name: MTEB ArxivClusteringS2S
|
|
|
|
|
198 |
metrics:
|
199 |
- type: v_measure
|
200 |
value: 24.67870651472156
|
@@ -203,6 +231,8 @@ model-index:
|
|
203 |
dataset:
|
204 |
type: mteb/askubuntudupquestions-reranking
|
205 |
name: MTEB AskUbuntuDupQuestions
|
|
|
|
|
206 |
metrics:
|
207 |
- type: map
|
208 |
value: 52.63439984994702
|
@@ -213,6 +243,8 @@ model-index:
|
|
213 |
dataset:
|
214 |
type: mteb/biosses-sts
|
215 |
name: MTEB BIOSSES
|
|
|
|
|
216 |
metrics:
|
217 |
- type: cos_sim_pearson
|
218 |
value: 72.78000135012542
|
@@ -231,6 +263,8 @@ model-index:
|
|
231 |
dataset:
|
232 |
type: mteb/bucc-bitext-mining
|
233 |
name: MTEB BUCC (de-en)
|
|
|
|
|
234 |
metrics:
|
235 |
- type: accuracy
|
236 |
value: 1.0960334029227559
|
@@ -245,6 +279,8 @@ model-index:
|
|
245 |
dataset:
|
246 |
type: mteb/bucc-bitext-mining
|
247 |
name: MTEB BUCC (fr-en)
|
|
|
|
|
248 |
metrics:
|
249 |
- type: accuracy
|
250 |
value: 0.02201188641866608
|
@@ -259,6 +295,8 @@ model-index:
|
|
259 |
dataset:
|
260 |
type: mteb/bucc-bitext-mining
|
261 |
name: MTEB BUCC (ru-en)
|
|
|
|
|
262 |
metrics:
|
263 |
- type: accuracy
|
264 |
value: 0.0
|
@@ -273,6 +311,8 @@ model-index:
|
|
273 |
dataset:
|
274 |
type: mteb/bucc-bitext-mining
|
275 |
name: MTEB BUCC (zh-en)
|
|
|
|
|
276 |
metrics:
|
277 |
- type: accuracy
|
278 |
value: 0.0
|
@@ -287,6 +327,8 @@ model-index:
|
|
287 |
dataset:
|
288 |
type: mteb/banking77
|
289 |
name: MTEB Banking77Classification
|
|
|
|
|
290 |
metrics:
|
291 |
- type: accuracy
|
292 |
value: 74.67857142857142
|
@@ -297,6 +339,8 @@ model-index:
|
|
297 |
dataset:
|
298 |
type: mteb/biorxiv-clustering-p2p
|
299 |
name: MTEB BiorxivClusteringP2P
|
|
|
|
|
300 |
metrics:
|
301 |
- type: v_measure
|
302 |
value: 28.93427045246491
|
@@ -305,6 +349,8 @@ model-index:
|
|
305 |
dataset:
|
306 |
type: mteb/biorxiv-clustering-s2s
|
307 |
name: MTEB BiorxivClusteringS2S
|
|
|
|
|
308 |
metrics:
|
309 |
- type: v_measure
|
310 |
value: 23.080939123955474
|
@@ -313,6 +359,8 @@ model-index:
|
|
313 |
dataset:
|
314 |
type: BeIR/cqadupstack
|
315 |
name: MTEB CQADupstackAndroidRetrieval
|
|
|
|
|
316 |
metrics:
|
317 |
- type: map_at_1
|
318 |
value: 18.221999999999998
|
@@ -367,6 +415,8 @@ model-index:
|
|
367 |
dataset:
|
368 |
type: BeIR/cqadupstack
|
369 |
name: MTEB CQADupstackEnglishRetrieval
|
|
|
|
|
370 |
metrics:
|
371 |
- type: map_at_1
|
372 |
value: 12.058
|
@@ -421,6 +471,8 @@ model-index:
|
|
421 |
dataset:
|
422 |
type: BeIR/cqadupstack
|
423 |
name: MTEB CQADupstackGamingRetrieval
|
|
|
|
|
424 |
metrics:
|
425 |
- type: map_at_1
|
426 |
value: 21.183
|
@@ -475,6 +527,8 @@ model-index:
|
|
475 |
dataset:
|
476 |
type: BeIR/cqadupstack
|
477 |
name: MTEB CQADupstackGisRetrieval
|
|
|
|
|
478 |
metrics:
|
479 |
- type: map_at_1
|
480 |
value: 11.350999999999999
|
@@ -529,6 +583,8 @@ model-index:
|
|
529 |
dataset:
|
530 |
type: BeIR/cqadupstack
|
531 |
name: MTEB CQADupstackMathematicaRetrieval
|
|
|
|
|
532 |
metrics:
|
533 |
- type: map_at_1
|
534 |
value: 8.08
|
@@ -583,6 +639,8 @@ model-index:
|
|
583 |
dataset:
|
584 |
type: BeIR/cqadupstack
|
585 |
name: MTEB CQADupstackPhysicsRetrieval
|
|
|
|
|
586 |
metrics:
|
587 |
- type: map_at_1
|
588 |
value: 13.908999999999999
|
@@ -637,6 +695,8 @@ model-index:
|
|
637 |
dataset:
|
638 |
type: BeIR/cqadupstack
|
639 |
name: MTEB CQADupstackProgrammersRetrieval
|
|
|
|
|
640 |
metrics:
|
641 |
- type: map_at_1
|
642 |
value: 12.598
|
@@ -691,6 +751,8 @@ model-index:
|
|
691 |
dataset:
|
692 |
type: BeIR/cqadupstack
|
693 |
name: MTEB CQADupstackRetrieval
|
|
|
|
|
694 |
metrics:
|
695 |
- type: map_at_1
|
696 |
value: 12.738416666666666
|
@@ -745,6 +807,8 @@ model-index:
|
|
745 |
dataset:
|
746 |
type: BeIR/cqadupstack
|
747 |
name: MTEB CQADupstackStatsRetrieval
|
|
|
|
|
748 |
metrics:
|
749 |
- type: map_at_1
|
750 |
value: 12.307
|
@@ -799,6 +863,8 @@ model-index:
|
|
799 |
dataset:
|
800 |
type: BeIR/cqadupstack
|
801 |
name: MTEB CQADupstackTexRetrieval
|
|
|
|
|
802 |
metrics:
|
803 |
- type: map_at_1
|
804 |
value: 6.496
|
@@ -853,6 +919,8 @@ model-index:
|
|
853 |
dataset:
|
854 |
type: BeIR/cqadupstack
|
855 |
name: MTEB CQADupstackUnixRetrieval
|
|
|
|
|
856 |
metrics:
|
857 |
- type: map_at_1
|
858 |
value: 13.843
|
@@ -907,6 +975,8 @@ model-index:
|
|
907 |
dataset:
|
908 |
type: BeIR/cqadupstack
|
909 |
name: MTEB CQADupstackWebmastersRetrieval
|
|
|
|
|
910 |
metrics:
|
911 |
- type: map_at_1
|
912 |
value: 13.757
|
@@ -961,6 +1031,8 @@ model-index:
|
|
961 |
dataset:
|
962 |
type: BeIR/cqadupstack
|
963 |
name: MTEB CQADupstackWordpressRetrieval
|
|
|
|
|
964 |
metrics:
|
965 |
- type: map_at_1
|
966 |
value: 9.057
|
@@ -1015,6 +1087,8 @@ model-index:
|
|
1015 |
dataset:
|
1016 |
type: climate-fever
|
1017 |
name: MTEB ClimateFEVER
|
|
|
|
|
1018 |
metrics:
|
1019 |
- type: map_at_1
|
1020 |
value: 3.714
|
@@ -1069,6 +1143,8 @@ model-index:
|
|
1069 |
dataset:
|
1070 |
type: dbpedia-entity
|
1071 |
name: MTEB DBPedia
|
|
|
|
|
1072 |
metrics:
|
1073 |
- type: map_at_1
|
1074 |
value: 1.764
|
@@ -1123,6 +1199,8 @@ model-index:
|
|
1123 |
dataset:
|
1124 |
type: mteb/emotion
|
1125 |
name: MTEB EmotionClassification
|
|
|
|
|
1126 |
metrics:
|
1127 |
- type: accuracy
|
1128 |
value: 42.225
|
@@ -1133,6 +1211,8 @@ model-index:
|
|
1133 |
dataset:
|
1134 |
type: fever
|
1135 |
name: MTEB FEVER
|
|
|
|
|
1136 |
metrics:
|
1137 |
- type: map_at_1
|
1138 |
value: 11.497
|
@@ -1187,6 +1267,8 @@ model-index:
|
|
1187 |
dataset:
|
1188 |
type: fiqa
|
1189 |
name: MTEB FiQA2018
|
|
|
|
|
1190 |
metrics:
|
1191 |
- type: map_at_1
|
1192 |
value: 3.637
|
@@ -1241,6 +1323,8 @@ model-index:
|
|
1241 |
dataset:
|
1242 |
type: hotpotqa
|
1243 |
name: MTEB HotpotQA
|
|
|
|
|
1244 |
metrics:
|
1245 |
- type: map_at_1
|
1246 |
value: 9.676
|
@@ -1295,6 +1379,8 @@ model-index:
|
|
1295 |
dataset:
|
1296 |
type: mteb/imdb
|
1297 |
name: MTEB ImdbClassification
|
|
|
|
|
1298 |
metrics:
|
1299 |
- type: accuracy
|
1300 |
value: 62.895999999999994
|
@@ -1307,6 +1393,8 @@ model-index:
|
|
1307 |
dataset:
|
1308 |
type: msmarco
|
1309 |
name: MTEB MSMARCO
|
|
|
|
|
1310 |
metrics:
|
1311 |
- type: map_at_1
|
1312 |
value: 2.88
|
@@ -1361,6 +1449,8 @@ model-index:
|
|
1361 |
dataset:
|
1362 |
type: mteb/mtop_domain
|
1363 |
name: MTEB MTOPDomainClassification (en)
|
|
|
|
|
1364 |
metrics:
|
1365 |
- type: accuracy
|
1366 |
value: 81.51846785225717
|
@@ -1371,6 +1461,8 @@ model-index:
|
|
1371 |
dataset:
|
1372 |
type: mteb/mtop_domain
|
1373 |
name: MTEB MTOPDomainClassification (de)
|
|
|
|
|
1374 |
metrics:
|
1375 |
- type: accuracy
|
1376 |
value: 60.37475345167653
|
@@ -1381,6 +1473,8 @@ model-index:
|
|
1381 |
dataset:
|
1382 |
type: mteb/mtop_domain
|
1383 |
name: MTEB MTOPDomainClassification (es)
|
|
|
|
|
1384 |
metrics:
|
1385 |
- type: accuracy
|
1386 |
value: 67.36824549699799
|
@@ -1391,6 +1485,8 @@ model-index:
|
|
1391 |
dataset:
|
1392 |
type: mteb/mtop_domain
|
1393 |
name: MTEB MTOPDomainClassification (fr)
|
|
|
|
|
1394 |
metrics:
|
1395 |
- type: accuracy
|
1396 |
value: 63.12871907297212
|
@@ -1401,6 +1497,8 @@ model-index:
|
|
1401 |
dataset:
|
1402 |
type: mteb/mtop_domain
|
1403 |
name: MTEB MTOPDomainClassification (hi)
|
|
|
|
|
1404 |
metrics:
|
1405 |
- type: accuracy
|
1406 |
value: 47.04553603442094
|
@@ -1411,6 +1509,8 @@ model-index:
|
|
1411 |
dataset:
|
1412 |
type: mteb/mtop_domain
|
1413 |
name: MTEB MTOPDomainClassification (th)
|
|
|
|
|
1414 |
metrics:
|
1415 |
- type: accuracy
|
1416 |
value: 52.282097649186255
|
@@ -1421,6 +1521,8 @@ model-index:
|
|
1421 |
dataset:
|
1422 |
type: mteb/mtop_intent
|
1423 |
name: MTEB MTOPIntentClassification (en)
|
|
|
|
|
1424 |
metrics:
|
1425 |
- type: accuracy
|
1426 |
value: 58.2421340629275
|
@@ -1431,6 +1533,8 @@ model-index:
|
|
1431 |
dataset:
|
1432 |
type: mteb/mtop_intent
|
1433 |
name: MTEB MTOPIntentClassification (de)
|
|
|
|
|
1434 |
metrics:
|
1435 |
- type: accuracy
|
1436 |
value: 45.069033530571986
|
@@ -1441,6 +1545,8 @@ model-index:
|
|
1441 |
dataset:
|
1442 |
type: mteb/mtop_intent
|
1443 |
name: MTEB MTOPIntentClassification (es)
|
|
|
|
|
1444 |
metrics:
|
1445 |
- type: accuracy
|
1446 |
value: 48.80920613742495
|
@@ -1451,6 +1557,8 @@ model-index:
|
|
1451 |
dataset:
|
1452 |
type: mteb/mtop_intent
|
1453 |
name: MTEB MTOPIntentClassification (fr)
|
|
|
|
|
1454 |
metrics:
|
1455 |
- type: accuracy
|
1456 |
value: 44.337613529595984
|
@@ -1461,6 +1569,8 @@ model-index:
|
|
1461 |
dataset:
|
1462 |
type: mteb/mtop_intent
|
1463 |
name: MTEB MTOPIntentClassification (hi)
|
|
|
|
|
1464 |
metrics:
|
1465 |
- type: accuracy
|
1466 |
value: 34.198637504481894
|
@@ -1471,6 +1581,8 @@ model-index:
|
|
1471 |
dataset:
|
1472 |
type: mteb/mtop_intent
|
1473 |
name: MTEB MTOPIntentClassification (th)
|
|
|
|
|
1474 |
metrics:
|
1475 |
- type: accuracy
|
1476 |
value: 43.11030741410488
|
@@ -1481,6 +1593,8 @@ model-index:
|
|
1481 |
dataset:
|
1482 |
type: mteb/amazon_massive_intent
|
1483 |
name: MTEB MassiveIntentClassification (af)
|
|
|
|
|
1484 |
metrics:
|
1485 |
- type: accuracy
|
1486 |
value: 37.79421654337593
|
@@ -1491,6 +1605,8 @@ model-index:
|
|
1491 |
dataset:
|
1492 |
type: mteb/amazon_massive_intent
|
1493 |
name: MTEB MassiveIntentClassification (am)
|
|
|
|
|
1494 |
metrics:
|
1495 |
- type: accuracy
|
1496 |
value: 23.722259583053127
|
@@ -1501,6 +1617,8 @@ model-index:
|
|
1501 |
dataset:
|
1502 |
type: mteb/amazon_massive_intent
|
1503 |
name: MTEB MassiveIntentClassification (ar)
|
|
|
|
|
1504 |
metrics:
|
1505 |
- type: accuracy
|
1506 |
value: 29.64021519838601
|
@@ -1511,6 +1629,8 @@ model-index:
|
|
1511 |
dataset:
|
1512 |
type: mteb/amazon_massive_intent
|
1513 |
name: MTEB MassiveIntentClassification (az)
|
|
|
|
|
1514 |
metrics:
|
1515 |
- type: accuracy
|
1516 |
value: 39.4754539340955
|
@@ -1521,6 +1641,8 @@ model-index:
|
|
1521 |
dataset:
|
1522 |
type: mteb/amazon_massive_intent
|
1523 |
name: MTEB MassiveIntentClassification (bn)
|
|
|
|
|
1524 |
metrics:
|
1525 |
- type: accuracy
|
1526 |
value: 26.550100874243444
|
@@ -1531,6 +1653,8 @@ model-index:
|
|
1531 |
dataset:
|
1532 |
type: mteb/amazon_massive_intent
|
1533 |
name: MTEB MassiveIntentClassification (cy)
|
|
|
|
|
1534 |
metrics:
|
1535 |
- type: accuracy
|
1536 |
value: 38.78278412911904
|
@@ -1541,6 +1665,8 @@ model-index:
|
|
1541 |
dataset:
|
1542 |
type: mteb/amazon_massive_intent
|
1543 |
name: MTEB MassiveIntentClassification (da)
|
|
|
|
|
1544 |
metrics:
|
1545 |
- type: accuracy
|
1546 |
value: 43.557498318762605
|
@@ -1551,6 +1677,8 @@ model-index:
|
|
1551 |
dataset:
|
1552 |
type: mteb/amazon_massive_intent
|
1553 |
name: MTEB MassiveIntentClassification (de)
|
|
|
|
|
1554 |
metrics:
|
1555 |
- type: accuracy
|
1556 |
value: 40.39340954942838
|
@@ -1561,6 +1689,8 @@ model-index:
|
|
1561 |
dataset:
|
1562 |
type: mteb/amazon_massive_intent
|
1563 |
name: MTEB MassiveIntentClassification (el)
|
|
|
|
|
1564 |
metrics:
|
1565 |
- type: accuracy
|
1566 |
value: 37.28648285137861
|
@@ -1571,6 +1701,8 @@ model-index:
|
|
1571 |
dataset:
|
1572 |
type: mteb/amazon_massive_intent
|
1573 |
name: MTEB MassiveIntentClassification (en)
|
|
|
|
|
1574 |
metrics:
|
1575 |
- type: accuracy
|
1576 |
value: 58.080026899798256
|
@@ -1581,6 +1713,8 @@ model-index:
|
|
1581 |
dataset:
|
1582 |
type: mteb/amazon_massive_intent
|
1583 |
name: MTEB MassiveIntentClassification (es)
|
|
|
|
|
1584 |
metrics:
|
1585 |
- type: accuracy
|
1586 |
value: 41.176866173503704
|
@@ -1591,6 +1725,8 @@ model-index:
|
|
1591 |
dataset:
|
1592 |
type: mteb/amazon_massive_intent
|
1593 |
name: MTEB MassiveIntentClassification (fa)
|
|
|
|
|
1594 |
metrics:
|
1595 |
- type: accuracy
|
1596 |
value: 36.422326832548755
|
@@ -1601,6 +1737,8 @@ model-index:
|
|
1601 |
dataset:
|
1602 |
type: mteb/amazon_massive_intent
|
1603 |
name: MTEB MassiveIntentClassification (fi)
|
|
|
|
|
1604 |
metrics:
|
1605 |
- type: accuracy
|
1606 |
value: 38.75588433086752
|
@@ -1611,6 +1749,8 @@ model-index:
|
|
1611 |
dataset:
|
1612 |
type: mteb/amazon_massive_intent
|
1613 |
name: MTEB MassiveIntentClassification (fr)
|
|
|
|
|
1614 |
metrics:
|
1615 |
- type: accuracy
|
1616 |
value: 43.67182246133153
|
@@ -1621,6 +1761,8 @@ model-index:
|
|
1621 |
dataset:
|
1622 |
type: mteb/amazon_massive_intent
|
1623 |
name: MTEB MassiveIntentClassification (he)
|
|
|
|
|
1624 |
metrics:
|
1625 |
- type: accuracy
|
1626 |
value: 31.980497646267658
|
@@ -1631,6 +1773,8 @@ model-index:
|
|
1631 |
dataset:
|
1632 |
type: mteb/amazon_massive_intent
|
1633 |
name: MTEB MassiveIntentClassification (hi)
|
|
|
|
|
1634 |
metrics:
|
1635 |
- type: accuracy
|
1636 |
value: 28.039677202420982
|
@@ -1641,6 +1785,8 @@ model-index:
|
|
1641 |
dataset:
|
1642 |
type: mteb/amazon_massive_intent
|
1643 |
name: MTEB MassiveIntentClassification (hu)
|
|
|
|
|
1644 |
metrics:
|
1645 |
- type: accuracy
|
1646 |
value: 38.13718897108272
|
@@ -1651,6 +1797,8 @@ model-index:
|
|
1651 |
dataset:
|
1652 |
type: mteb/amazon_massive_intent
|
1653 |
name: MTEB MassiveIntentClassification (hy)
|
|
|
|
|
1654 |
metrics:
|
1655 |
- type: accuracy
|
1656 |
value: 26.05245460659045
|
@@ -1661,6 +1809,8 @@ model-index:
|
|
1661 |
dataset:
|
1662 |
type: mteb/amazon_massive_intent
|
1663 |
name: MTEB MassiveIntentClassification (id)
|
|
|
|
|
1664 |
metrics:
|
1665 |
- type: accuracy
|
1666 |
value: 41.156691324815064
|
@@ -1671,6 +1821,8 @@ model-index:
|
|
1671 |
dataset:
|
1672 |
type: mteb/amazon_massive_intent
|
1673 |
name: MTEB MassiveIntentClassification (is)
|
|
|
|
|
1674 |
metrics:
|
1675 |
- type: accuracy
|
1676 |
value: 38.62811028917284
|
@@ -1681,6 +1833,8 @@ model-index:
|
|
1681 |
dataset:
|
1682 |
type: mteb/amazon_massive_intent
|
1683 |
name: MTEB MassiveIntentClassification (it)
|
|
|
|
|
1684 |
metrics:
|
1685 |
- type: accuracy
|
1686 |
value: 44.0383322125084
|
@@ -1691,6 +1845,8 @@ model-index:
|
|
1691 |
dataset:
|
1692 |
type: mteb/amazon_massive_intent
|
1693 |
name: MTEB MassiveIntentClassification (ja)
|
|
|
|
|
1694 |
metrics:
|
1695 |
- type: accuracy
|
1696 |
value: 46.20712844653666
|
@@ -1701,6 +1857,8 @@ model-index:
|
|
1701 |
dataset:
|
1702 |
type: mteb/amazon_massive_intent
|
1703 |
name: MTEB MassiveIntentClassification (jv)
|
|
|
|
|
1704 |
metrics:
|
1705 |
- type: accuracy
|
1706 |
value: 37.60591795561533
|
@@ -1711,6 +1869,8 @@ model-index:
|
|
1711 |
dataset:
|
1712 |
type: mteb/amazon_massive_intent
|
1713 |
name: MTEB MassiveIntentClassification (ka)
|
|
|
|
|
1714 |
metrics:
|
1715 |
- type: accuracy
|
1716 |
value: 24.47209145931405
|
@@ -1721,6 +1881,8 @@ model-index:
|
|
1721 |
dataset:
|
1722 |
type: mteb/amazon_massive_intent
|
1723 |
name: MTEB MassiveIntentClassification (km)
|
|
|
|
|
1724 |
metrics:
|
1725 |
- type: accuracy
|
1726 |
value: 26.23739071956961
|
@@ -1731,6 +1893,8 @@ model-index:
|
|
1731 |
dataset:
|
1732 |
type: mteb/amazon_massive_intent
|
1733 |
name: MTEB MassiveIntentClassification (kn)
|
|
|
|
|
1734 |
metrics:
|
1735 |
- type: accuracy
|
1736 |
value: 17.831203765971754
|
@@ -1741,6 +1905,8 @@ model-index:
|
|
1741 |
dataset:
|
1742 |
type: mteb/amazon_massive_intent
|
1743 |
name: MTEB MassiveIntentClassification (ko)
|
|
|
|
|
1744 |
metrics:
|
1745 |
- type: accuracy
|
1746 |
value: 37.266308002689975
|
@@ -1751,6 +1917,8 @@ model-index:
|
|
1751 |
dataset:
|
1752 |
type: mteb/amazon_massive_intent
|
1753 |
name: MTEB MassiveIntentClassification (lv)
|
|
|
|
|
1754 |
metrics:
|
1755 |
- type: accuracy
|
1756 |
value: 40.93140551445864
|
@@ -1761,6 +1929,8 @@ model-index:
|
|
1761 |
dataset:
|
1762 |
type: mteb/amazon_massive_intent
|
1763 |
name: MTEB MassiveIntentClassification (ml)
|
|
|
|
|
1764 |
metrics:
|
1765 |
- type: accuracy
|
1766 |
value: 17.88500336247478
|
@@ -1771,6 +1941,8 @@ model-index:
|
|
1771 |
dataset:
|
1772 |
type: mteb/amazon_massive_intent
|
1773 |
name: MTEB MassiveIntentClassification (mn)
|
|
|
|
|
1774 |
metrics:
|
1775 |
- type: accuracy
|
1776 |
value: 32.975790181573636
|
@@ -1781,6 +1953,8 @@ model-index:
|
|
1781 |
dataset:
|
1782 |
type: mteb/amazon_massive_intent
|
1783 |
name: MTEB MassiveIntentClassification (ms)
|
|
|
|
|
1784 |
metrics:
|
1785 |
- type: accuracy
|
1786 |
value: 40.91123066577001
|
@@ -1791,6 +1965,8 @@ model-index:
|
|
1791 |
dataset:
|
1792 |
type: mteb/amazon_massive_intent
|
1793 |
name: MTEB MassiveIntentClassification (my)
|
|
|
|
|
1794 |
metrics:
|
1795 |
- type: accuracy
|
1796 |
value: 17.834566240753194
|
@@ -1801,6 +1977,8 @@ model-index:
|
|
1801 |
dataset:
|
1802 |
type: mteb/amazon_massive_intent
|
1803 |
name: MTEB MassiveIntentClassification (nb)
|
|
|
|
|
1804 |
metrics:
|
1805 |
- type: accuracy
|
1806 |
value: 39.47881640887693
|
@@ -1811,6 +1989,8 @@ model-index:
|
|
1811 |
dataset:
|
1812 |
type: mteb/amazon_massive_intent
|
1813 |
name: MTEB MassiveIntentClassification (nl)
|
|
|
|
|
1814 |
metrics:
|
1815 |
- type: accuracy
|
1816 |
value: 41.76193678547412
|
@@ -1821,6 +2001,8 @@ model-index:
|
|
1821 |
dataset:
|
1822 |
type: mteb/amazon_massive_intent
|
1823 |
name: MTEB MassiveIntentClassification (pl)
|
|
|
|
|
1824 |
metrics:
|
1825 |
- type: accuracy
|
1826 |
value: 42.61936785474109
|
@@ -1831,6 +2013,8 @@ model-index:
|
|
1831 |
dataset:
|
1832 |
type: mteb/amazon_massive_intent
|
1833 |
name: MTEB MassiveIntentClassification (pt)
|
|
|
|
|
1834 |
metrics:
|
1835 |
- type: accuracy
|
1836 |
value: 44.54270342972427
|
@@ -1841,6 +2025,8 @@ model-index:
|
|
1841 |
dataset:
|
1842 |
type: mteb/amazon_massive_intent
|
1843 |
name: MTEB MassiveIntentClassification (ro)
|
|
|
|
|
1844 |
metrics:
|
1845 |
- type: accuracy
|
1846 |
value: 39.96973772696705
|
@@ -1851,6 +2037,8 @@ model-index:
|
|
1851 |
dataset:
|
1852 |
type: mteb/amazon_massive_intent
|
1853 |
name: MTEB MassiveIntentClassification (ru)
|
|
|
|
|
1854 |
metrics:
|
1855 |
- type: accuracy
|
1856 |
value: 37.461331540013454
|
@@ -1861,6 +2049,8 @@ model-index:
|
|
1861 |
dataset:
|
1862 |
type: mteb/amazon_massive_intent
|
1863 |
name: MTEB MassiveIntentClassification (sl)
|
|
|
|
|
1864 |
metrics:
|
1865 |
- type: accuracy
|
1866 |
value: 38.28850033624748
|
@@ -1871,6 +2061,8 @@ model-index:
|
|
1871 |
dataset:
|
1872 |
type: mteb/amazon_massive_intent
|
1873 |
name: MTEB MassiveIntentClassification (sq)
|
|
|
|
|
1874 |
metrics:
|
1875 |
- type: accuracy
|
1876 |
value: 40.95494283792872
|
@@ -1881,6 +2073,8 @@ model-index:
|
|
1881 |
dataset:
|
1882 |
type: mteb/amazon_massive_intent
|
1883 |
name: MTEB MassiveIntentClassification (sv)
|
|
|
|
|
1884 |
metrics:
|
1885 |
- type: accuracy
|
1886 |
value: 41.85272360457296
|
@@ -1891,6 +2085,8 @@ model-index:
|
|
1891 |
dataset:
|
1892 |
type: mteb/amazon_massive_intent
|
1893 |
name: MTEB MassiveIntentClassification (sw)
|
|
|
|
|
1894 |
metrics:
|
1895 |
- type: accuracy
|
1896 |
value: 38.328850033624754
|
@@ -1901,6 +2097,8 @@ model-index:
|
|
1901 |
dataset:
|
1902 |
type: mteb/amazon_massive_intent
|
1903 |
name: MTEB MassiveIntentClassification (ta)
|
|
|
|
|
1904 |
metrics:
|
1905 |
- type: accuracy
|
1906 |
value: 19.031607262945528
|
@@ -1911,6 +2109,8 @@ model-index:
|
|
1911 |
dataset:
|
1912 |
type: mteb/amazon_massive_intent
|
1913 |
name: MTEB MassiveIntentClassification (te)
|
|
|
|
|
1914 |
metrics:
|
1915 |
- type: accuracy
|
1916 |
value: 19.38466711499664
|
@@ -1921,6 +2121,8 @@ model-index:
|
|
1921 |
dataset:
|
1922 |
type: mteb/amazon_massive_intent
|
1923 |
name: MTEB MassiveIntentClassification (th)
|
|
|
|
|
1924 |
metrics:
|
1925 |
- type: accuracy
|
1926 |
value: 34.088769334229994
|
@@ -1931,6 +2133,8 @@ model-index:
|
|
1931 |
dataset:
|
1932 |
type: mteb/amazon_massive_intent
|
1933 |
name: MTEB MassiveIntentClassification (tl)
|
|
|
|
|
1934 |
metrics:
|
1935 |
- type: accuracy
|
1936 |
value: 40.285810356422324
|
@@ -1941,6 +2145,8 @@ model-index:
|
|
1941 |
dataset:
|
1942 |
type: mteb/amazon_massive_intent
|
1943 |
name: MTEB MassiveIntentClassification (tr)
|
|
|
|
|
1944 |
metrics:
|
1945 |
- type: accuracy
|
1946 |
value: 38.860121049092136
|
@@ -1951,6 +2157,8 @@ model-index:
|
|
1951 |
dataset:
|
1952 |
type: mteb/amazon_massive_intent
|
1953 |
name: MTEB MassiveIntentClassification (ur)
|
|
|
|
|
1954 |
metrics:
|
1955 |
- type: accuracy
|
1956 |
value: 27.834566240753194
|
@@ -1961,6 +2169,8 @@ model-index:
|
|
1961 |
dataset:
|
1962 |
type: mteb/amazon_massive_intent
|
1963 |
name: MTEB MassiveIntentClassification (vi)
|
|
|
|
|
1964 |
metrics:
|
1965 |
- type: accuracy
|
1966 |
value: 38.70544720914593
|
@@ -1971,6 +2181,8 @@ model-index:
|
|
1971 |
dataset:
|
1972 |
type: mteb/amazon_massive_intent
|
1973 |
name: MTEB MassiveIntentClassification (zh-CN)
|
|
|
|
|
1974 |
metrics:
|
1975 |
- type: accuracy
|
1976 |
value: 45.78009414929387
|
@@ -1981,6 +2193,8 @@ model-index:
|
|
1981 |
dataset:
|
1982 |
type: mteb/amazon_massive_intent
|
1983 |
name: MTEB MassiveIntentClassification (zh-TW)
|
|
|
|
|
1984 |
metrics:
|
1985 |
- type: accuracy
|
1986 |
value: 42.32010759919301
|
@@ -1991,6 +2205,8 @@ model-index:
|
|
1991 |
dataset:
|
1992 |
type: mteb/amazon_massive_scenario
|
1993 |
name: MTEB MassiveScenarioClassification (af)
|
|
|
|
|
1994 |
metrics:
|
1995 |
- type: accuracy
|
1996 |
value: 40.24546065904506
|
@@ -2001,6 +2217,8 @@ model-index:
|
|
2001 |
dataset:
|
2002 |
type: mteb/amazon_massive_scenario
|
2003 |
name: MTEB MassiveScenarioClassification (am)
|
|
|
|
|
2004 |
metrics:
|
2005 |
- type: accuracy
|
2006 |
value: 25.68930733019502
|
@@ -2011,6 +2229,8 @@ model-index:
|
|
2011 |
dataset:
|
2012 |
type: mteb/amazon_massive_scenario
|
2013 |
name: MTEB MassiveScenarioClassification (ar)
|
|
|
|
|
2014 |
metrics:
|
2015 |
- type: accuracy
|
2016 |
value: 32.39744451916611
|
@@ -2021,6 +2241,8 @@ model-index:
|
|
2021 |
dataset:
|
2022 |
type: mteb/amazon_massive_scenario
|
2023 |
name: MTEB MassiveScenarioClassification (az)
|
|
|
|
|
2024 |
metrics:
|
2025 |
- type: accuracy
|
2026 |
value: 40.53127101546738
|
@@ -2031,6 +2253,8 @@ model-index:
|
|
2031 |
dataset:
|
2032 |
type: mteb/amazon_massive_scenario
|
2033 |
name: MTEB MassiveScenarioClassification (bn)
|
|
|
|
|
2034 |
metrics:
|
2035 |
- type: accuracy
|
2036 |
value: 27.23268325487559
|
@@ -2041,6 +2265,8 @@ model-index:
|
|
2041 |
dataset:
|
2042 |
type: mteb/amazon_massive_scenario
|
2043 |
name: MTEB MassiveScenarioClassification (cy)
|
|
|
|
|
2044 |
metrics:
|
2045 |
- type: accuracy
|
2046 |
value: 38.69872225958305
|
@@ -2051,6 +2277,8 @@ model-index:
|
|
2051 |
dataset:
|
2052 |
type: mteb/amazon_massive_scenario
|
2053 |
name: MTEB MassiveScenarioClassification (da)
|
|
|
|
|
2054 |
metrics:
|
2055 |
- type: accuracy
|
2056 |
value: 44.75453934095494
|
@@ -2061,6 +2289,8 @@ model-index:
|
|
2061 |
dataset:
|
2062 |
type: mteb/amazon_massive_scenario
|
2063 |
name: MTEB MassiveScenarioClassification (de)
|
|
|
|
|
2064 |
metrics:
|
2065 |
- type: accuracy
|
2066 |
value: 41.355077336919976
|
@@ -2071,6 +2301,8 @@ model-index:
|
|
2071 |
dataset:
|
2072 |
type: mteb/amazon_massive_scenario
|
2073 |
name: MTEB MassiveScenarioClassification (el)
|
|
|
|
|
2074 |
metrics:
|
2075 |
- type: accuracy
|
2076 |
value: 38.43981170141224
|
@@ -2081,6 +2313,8 @@ model-index:
|
|
2081 |
dataset:
|
2082 |
type: mteb/amazon_massive_scenario
|
2083 |
name: MTEB MassiveScenarioClassification (en)
|
|
|
|
|
2084 |
metrics:
|
2085 |
- type: accuracy
|
2086 |
value: 66.33826496301278
|
@@ -2091,6 +2325,8 @@ model-index:
|
|
2091 |
dataset:
|
2092 |
type: mteb/amazon_massive_scenario
|
2093 |
name: MTEB MassiveScenarioClassification (es)
|
|
|
|
|
2094 |
metrics:
|
2095 |
- type: accuracy
|
2096 |
value: 44.17955615332885
|
@@ -2101,6 +2337,8 @@ model-index:
|
|
2101 |
dataset:
|
2102 |
type: mteb/amazon_massive_scenario
|
2103 |
name: MTEB MassiveScenarioClassification (fa)
|
|
|
|
|
2104 |
metrics:
|
2105 |
- type: accuracy
|
2106 |
value: 34.82851378614661
|
@@ -2111,6 +2349,8 @@ model-index:
|
|
2111 |
dataset:
|
2112 |
type: mteb/amazon_massive_scenario
|
2113 |
name: MTEB MassiveScenarioClassification (fi)
|
|
|
|
|
2114 |
metrics:
|
2115 |
- type: accuracy
|
2116 |
value: 40.561533288500335
|
@@ -2121,6 +2361,8 @@ model-index:
|
|
2121 |
dataset:
|
2122 |
type: mteb/amazon_massive_scenario
|
2123 |
name: MTEB MassiveScenarioClassification (fr)
|
|
|
|
|
2124 |
metrics:
|
2125 |
- type: accuracy
|
2126 |
value: 45.917955615332886
|
@@ -2131,6 +2373,8 @@ model-index:
|
|
2131 |
dataset:
|
2132 |
type: mteb/amazon_massive_scenario
|
2133 |
name: MTEB MassiveScenarioClassification (he)
|
|
|
|
|
2134 |
metrics:
|
2135 |
- type: accuracy
|
2136 |
value: 32.08473436449227
|
@@ -2141,6 +2385,8 @@ model-index:
|
|
2141 |
dataset:
|
2142 |
type: mteb/amazon_massive_scenario
|
2143 |
name: MTEB MassiveScenarioClassification (hi)
|
|
|
|
|
2144 |
metrics:
|
2145 |
- type: accuracy
|
2146 |
value: 28.369199731002016
|
@@ -2151,6 +2397,8 @@ model-index:
|
|
2151 |
dataset:
|
2152 |
type: mteb/amazon_massive_scenario
|
2153 |
name: MTEB MassiveScenarioClassification (hu)
|
|
|
|
|
2154 |
metrics:
|
2155 |
- type: accuracy
|
2156 |
value: 39.49226630800269
|
@@ -2161,6 +2409,8 @@ model-index:
|
|
2161 |
dataset:
|
2162 |
type: mteb/amazon_massive_scenario
|
2163 |
name: MTEB MassiveScenarioClassification (hy)
|
|
|
|
|
2164 |
metrics:
|
2165 |
- type: accuracy
|
2166 |
value: 25.904505716207133
|
@@ -2171,6 +2421,8 @@ model-index:
|
|
2171 |
dataset:
|
2172 |
type: mteb/amazon_massive_scenario
|
2173 |
name: MTEB MassiveScenarioClassification (id)
|
|
|
|
|
2174 |
metrics:
|
2175 |
- type: accuracy
|
2176 |
value: 40.95830531271016
|
@@ -2181,6 +2433,8 @@ model-index:
|
|
2181 |
dataset:
|
2182 |
type: mteb/amazon_massive_scenario
|
2183 |
name: MTEB MassiveScenarioClassification (is)
|
|
|
|
|
2184 |
metrics:
|
2185 |
- type: accuracy
|
2186 |
value: 38.564223268325485
|
@@ -2191,6 +2445,8 @@ model-index:
|
|
2191 |
dataset:
|
2192 |
type: mteb/amazon_massive_scenario
|
2193 |
name: MTEB MassiveScenarioClassification (it)
|
|
|
|
|
2194 |
metrics:
|
2195 |
- type: accuracy
|
2196 |
value: 46.58708809683928
|
@@ -2201,6 +2457,8 @@ model-index:
|
|
2201 |
dataset:
|
2202 |
type: mteb/amazon_massive_scenario
|
2203 |
name: MTEB MassiveScenarioClassification (ja)
|
|
|
|
|
2204 |
metrics:
|
2205 |
- type: accuracy
|
2206 |
value: 46.24747814391393
|
@@ -2211,6 +2469,8 @@ model-index:
|
|
2211 |
dataset:
|
2212 |
type: mteb/amazon_massive_scenario
|
2213 |
name: MTEB MassiveScenarioClassification (jv)
|
|
|
|
|
2214 |
metrics:
|
2215 |
- type: accuracy
|
2216 |
value: 39.6570275722932
|
@@ -2221,6 +2481,8 @@ model-index:
|
|
2221 |
dataset:
|
2222 |
type: mteb/amazon_massive_scenario
|
2223 |
name: MTEB MassiveScenarioClassification (ka)
|
|
|
|
|
2224 |
metrics:
|
2225 |
- type: accuracy
|
2226 |
value: 25.279085406859448
|
@@ -2231,6 +2493,8 @@ model-index:
|
|
2231 |
dataset:
|
2232 |
type: mteb/amazon_massive_scenario
|
2233 |
name: MTEB MassiveScenarioClassification (km)
|
|
|
|
|
2234 |
metrics:
|
2235 |
- type: accuracy
|
2236 |
value: 28.97108271687962
|
@@ -2241,6 +2505,8 @@ model-index:
|
|
2241 |
dataset:
|
2242 |
type: mteb/amazon_massive_scenario
|
2243 |
name: MTEB MassiveScenarioClassification (kn)
|
|
|
|
|
2244 |
metrics:
|
2245 |
- type: accuracy
|
2246 |
value: 19.27370544720915
|
@@ -2251,6 +2517,8 @@ model-index:
|
|
2251 |
dataset:
|
2252 |
type: mteb/amazon_massive_scenario
|
2253 |
name: MTEB MassiveScenarioClassification (ko)
|
|
|
|
|
2254 |
metrics:
|
2255 |
- type: accuracy
|
2256 |
value: 35.729657027572294
|
@@ -2261,6 +2529,8 @@ model-index:
|
|
2261 |
dataset:
|
2262 |
type: mteb/amazon_massive_scenario
|
2263 |
name: MTEB MassiveScenarioClassification (lv)
|
|
|
|
|
2264 |
metrics:
|
2265 |
- type: accuracy
|
2266 |
value: 39.57296570275723
|
@@ -2271,6 +2541,8 @@ model-index:
|
|
2271 |
dataset:
|
2272 |
type: mteb/amazon_massive_scenario
|
2273 |
name: MTEB MassiveScenarioClassification (ml)
|
|
|
|
|
2274 |
metrics:
|
2275 |
- type: accuracy
|
2276 |
value: 19.895763281775388
|
@@ -2281,6 +2553,8 @@ model-index:
|
|
2281 |
dataset:
|
2282 |
type: mteb/amazon_massive_scenario
|
2283 |
name: MTEB MassiveScenarioClassification (mn)
|
|
|
|
|
2284 |
metrics:
|
2285 |
- type: accuracy
|
2286 |
value: 32.431069266980494
|
@@ -2291,6 +2565,8 @@ model-index:
|
|
2291 |
dataset:
|
2292 |
type: mteb/amazon_massive_scenario
|
2293 |
name: MTEB MassiveScenarioClassification (ms)
|
|
|
|
|
2294 |
metrics:
|
2295 |
- type: accuracy
|
2296 |
value: 42.32347007397445
|
@@ -2301,6 +2577,8 @@ model-index:
|
|
2301 |
dataset:
|
2302 |
type: mteb/amazon_massive_scenario
|
2303 |
name: MTEB MassiveScenarioClassification (my)
|
|
|
|
|
2304 |
metrics:
|
2305 |
- type: accuracy
|
2306 |
value: 20.864156018829856
|
@@ -2311,6 +2589,8 @@ model-index:
|
|
2311 |
dataset:
|
2312 |
type: mteb/amazon_massive_scenario
|
2313 |
name: MTEB MassiveScenarioClassification (nb)
|
|
|
|
|
2314 |
metrics:
|
2315 |
- type: accuracy
|
2316 |
value: 40.47074646940148
|
@@ -2321,6 +2601,8 @@ model-index:
|
|
2321 |
dataset:
|
2322 |
type: mteb/amazon_massive_scenario
|
2323 |
name: MTEB MassiveScenarioClassification (nl)
|
|
|
|
|
2324 |
metrics:
|
2325 |
- type: accuracy
|
2326 |
value: 43.591123066577
|
@@ -2331,6 +2613,8 @@ model-index:
|
|
2331 |
dataset:
|
2332 |
type: mteb/amazon_massive_scenario
|
2333 |
name: MTEB MassiveScenarioClassification (pl)
|
|
|
|
|
2334 |
metrics:
|
2335 |
- type: accuracy
|
2336 |
value: 41.876260928043045
|
@@ -2341,6 +2625,8 @@ model-index:
|
|
2341 |
dataset:
|
2342 |
type: mteb/amazon_massive_scenario
|
2343 |
name: MTEB MassiveScenarioClassification (pt)
|
|
|
|
|
2344 |
metrics:
|
2345 |
- type: accuracy
|
2346 |
value: 46.30800268997983
|
@@ -2351,6 +2637,8 @@ model-index:
|
|
2351 |
dataset:
|
2352 |
type: mteb/amazon_massive_scenario
|
2353 |
name: MTEB MassiveScenarioClassification (ro)
|
|
|
|
|
2354 |
metrics:
|
2355 |
- type: accuracy
|
2356 |
value: 42.525218560860786
|
@@ -2361,6 +2649,8 @@ model-index:
|
|
2361 |
dataset:
|
2362 |
type: mteb/amazon_massive_scenario
|
2363 |
name: MTEB MassiveScenarioClassification (ru)
|
|
|
|
|
2364 |
metrics:
|
2365 |
- type: accuracy
|
2366 |
value: 35.94821788836584
|
@@ -2371,6 +2661,8 @@ model-index:
|
|
2371 |
dataset:
|
2372 |
type: mteb/amazon_massive_scenario
|
2373 |
name: MTEB MassiveScenarioClassification (sl)
|
|
|
|
|
2374 |
metrics:
|
2375 |
- type: accuracy
|
2376 |
value: 38.69199731002017
|
@@ -2381,6 +2673,8 @@ model-index:
|
|
2381 |
dataset:
|
2382 |
type: mteb/amazon_massive_scenario
|
2383 |
name: MTEB MassiveScenarioClassification (sq)
|
|
|
|
|
2384 |
metrics:
|
2385 |
- type: accuracy
|
2386 |
value: 40.474108944182916
|
@@ -2391,6 +2685,8 @@ model-index:
|
|
2391 |
dataset:
|
2392 |
type: mteb/amazon_massive_scenario
|
2393 |
name: MTEB MassiveScenarioClassification (sv)
|
|
|
|
|
2394 |
metrics:
|
2395 |
- type: accuracy
|
2396 |
value: 41.523201075991935
|
@@ -2401,6 +2697,8 @@ model-index:
|
|
2401 |
dataset:
|
2402 |
type: mteb/amazon_massive_scenario
|
2403 |
name: MTEB MassiveScenarioClassification (sw)
|
|
|
|
|
2404 |
metrics:
|
2405 |
- type: accuracy
|
2406 |
value: 39.54942837928716
|
@@ -2411,6 +2709,8 @@ model-index:
|
|
2411 |
dataset:
|
2412 |
type: mteb/amazon_massive_scenario
|
2413 |
name: MTEB MassiveScenarioClassification (ta)
|
|
|
|
|
2414 |
metrics:
|
2415 |
- type: accuracy
|
2416 |
value: 22.8782784129119
|
@@ -2421,6 +2721,8 @@ model-index:
|
|
2421 |
dataset:
|
2422 |
type: mteb/amazon_massive_scenario
|
2423 |
name: MTEB MassiveScenarioClassification (te)
|
|
|
|
|
2424 |
metrics:
|
2425 |
- type: accuracy
|
2426 |
value: 20.51445864156019
|
@@ -2431,6 +2733,8 @@ model-index:
|
|
2431 |
dataset:
|
2432 |
type: mteb/amazon_massive_scenario
|
2433 |
name: MTEB MassiveScenarioClassification (th)
|
|
|
|
|
2434 |
metrics:
|
2435 |
- type: accuracy
|
2436 |
value: 34.92602555480834
|
@@ -2441,6 +2745,8 @@ model-index:
|
|
2441 |
dataset:
|
2442 |
type: mteb/amazon_massive_scenario
|
2443 |
name: MTEB MassiveScenarioClassification (tl)
|
|
|
|
|
2444 |
metrics:
|
2445 |
- type: accuracy
|
2446 |
value: 40.74983187626093
|
@@ -2451,6 +2757,8 @@ model-index:
|
|
2451 |
dataset:
|
2452 |
type: mteb/amazon_massive_scenario
|
2453 |
name: MTEB MassiveScenarioClassification (tr)
|
|
|
|
|
2454 |
metrics:
|
2455 |
- type: accuracy
|
2456 |
value: 39.06859448554136
|
@@ -2461,6 +2769,8 @@ model-index:
|
|
2461 |
dataset:
|
2462 |
type: mteb/amazon_massive_scenario
|
2463 |
name: MTEB MassiveScenarioClassification (ur)
|
|
|
|
|
2464 |
metrics:
|
2465 |
- type: accuracy
|
2466 |
value: 29.747814391392062
|
@@ -2471,6 +2781,8 @@ model-index:
|
|
2471 |
dataset:
|
2472 |
type: mteb/amazon_massive_scenario
|
2473 |
name: MTEB MassiveScenarioClassification (vi)
|
|
|
|
|
2474 |
metrics:
|
2475 |
- type: accuracy
|
2476 |
value: 38.02286482851379
|
@@ -2481,6 +2793,8 @@ model-index:
|
|
2481 |
dataset:
|
2482 |
type: mteb/amazon_massive_scenario
|
2483 |
name: MTEB MassiveScenarioClassification (zh-CN)
|
|
|
|
|
2484 |
metrics:
|
2485 |
- type: accuracy
|
2486 |
value: 48.550773369199725
|
@@ -2491,6 +2805,8 @@ model-index:
|
|
2491 |
dataset:
|
2492 |
type: mteb/amazon_massive_scenario
|
2493 |
name: MTEB MassiveScenarioClassification (zh-TW)
|
|
|
|
|
2494 |
metrics:
|
2495 |
- type: accuracy
|
2496 |
value: 45.17821116341628
|
@@ -2501,6 +2817,8 @@ model-index:
|
|
2501 |
dataset:
|
2502 |
type: mteb/medrxiv-clustering-p2p
|
2503 |
name: MTEB MedrxivClusteringP2P
|
|
|
|
|
2504 |
metrics:
|
2505 |
- type: v_measure
|
2506 |
value: 28.301902023313875
|
@@ -2509,6 +2827,8 @@ model-index:
|
|
2509 |
dataset:
|
2510 |
type: mteb/medrxiv-clustering-s2s
|
2511 |
name: MTEB MedrxivClusteringS2S
|
|
|
|
|
2512 |
metrics:
|
2513 |
- type: v_measure
|
2514 |
value: 24.932123582259287
|
@@ -2517,6 +2837,8 @@ model-index:
|
|
2517 |
dataset:
|
2518 |
type: mteb/mind_small
|
2519 |
name: MTEB MindSmallReranking
|
|
|
|
|
2520 |
metrics:
|
2521 |
- type: map
|
2522 |
value: 29.269341041468326
|
@@ -2527,6 +2849,8 @@ model-index:
|
|
2527 |
dataset:
|
2528 |
type: nfcorpus
|
2529 |
name: MTEB NFCorpus
|
|
|
|
|
2530 |
metrics:
|
2531 |
- type: map_at_1
|
2532 |
value: 1.2269999999999999
|
@@ -2581,6 +2905,8 @@ model-index:
|
|
2581 |
dataset:
|
2582 |
type: nq
|
2583 |
name: MTEB NQ
|
|
|
|
|
2584 |
metrics:
|
2585 |
- type: map_at_1
|
2586 |
value: 3.515
|
@@ -2635,6 +2961,8 @@ model-index:
|
|
2635 |
dataset:
|
2636 |
type: quora
|
2637 |
name: MTEB QuoraRetrieval
|
|
|
|
|
2638 |
metrics:
|
2639 |
- type: map_at_1
|
2640 |
value: 61.697
|
@@ -2689,6 +3017,8 @@ model-index:
|
|
2689 |
dataset:
|
2690 |
type: mteb/reddit-clustering
|
2691 |
name: MTEB RedditClustering
|
|
|
|
|
2692 |
metrics:
|
2693 |
- type: v_measure
|
2694 |
value: 33.75741018380938
|
@@ -2697,6 +3027,8 @@ model-index:
|
|
2697 |
dataset:
|
2698 |
type: mteb/reddit-clustering-p2p
|
2699 |
name: MTEB RedditClusteringP2P
|
|
|
|
|
2700 |
metrics:
|
2701 |
- type: v_measure
|
2702 |
value: 41.00799910099266
|
@@ -2705,6 +3037,8 @@ model-index:
|
|
2705 |
dataset:
|
2706 |
type: scidocs
|
2707 |
name: MTEB SCIDOCS
|
|
|
|
|
2708 |
metrics:
|
2709 |
- type: map_at_1
|
2710 |
value: 1.72
|
@@ -2759,6 +3093,8 @@ model-index:
|
|
2759 |
dataset:
|
2760 |
type: mteb/sickr-sts
|
2761 |
name: MTEB SICK-R
|
|
|
|
|
2762 |
metrics:
|
2763 |
- type: cos_sim_pearson
|
2764 |
value: 80.96286245858941
|
@@ -2777,6 +3113,8 @@ model-index:
|
|
2777 |
dataset:
|
2778 |
type: mteb/sts12-sts
|
2779 |
name: MTEB STS12
|
|
|
|
|
2780 |
metrics:
|
2781 |
- type: cos_sim_pearson
|
2782 |
value: 80.20938796088339
|
@@ -2795,6 +3133,8 @@ model-index:
|
|
2795 |
dataset:
|
2796 |
type: mteb/sts13-sts
|
2797 |
name: MTEB STS13
|
|
|
|
|
2798 |
metrics:
|
2799 |
- type: cos_sim_pearson
|
2800 |
value: 76.401935081936
|
@@ -2813,6 +3153,8 @@ model-index:
|
|
2813 |
dataset:
|
2814 |
type: mteb/sts14-sts
|
2815 |
name: MTEB STS14
|
|
|
|
|
2816 |
metrics:
|
2817 |
- type: cos_sim_pearson
|
2818 |
value: 75.35551963935667
|
@@ -2831,6 +3173,8 @@ model-index:
|
|
2831 |
dataset:
|
2832 |
type: mteb/sts15-sts
|
2833 |
name: MTEB STS15
|
|
|
|
|
2834 |
metrics:
|
2835 |
- type: cos_sim_pearson
|
2836 |
value: 79.05293131911803
|
@@ -2849,6 +3193,8 @@ model-index:
|
|
2849 |
dataset:
|
2850 |
type: mteb/sts16-sts
|
2851 |
name: MTEB STS16
|
|
|
|
|
2852 |
metrics:
|
2853 |
- type: cos_sim_pearson
|
2854 |
value: 76.04750373932828
|
@@ -2867,6 +3213,8 @@ model-index:
|
|
2867 |
dataset:
|
2868 |
type: mteb/sts17-crosslingual-sts
|
2869 |
name: MTEB STS17 (ko-ko)
|
|
|
|
|
2870 |
metrics:
|
2871 |
- type: cos_sim_pearson
|
2872 |
value: 43.0464619152799
|
@@ -2885,6 +3233,8 @@ model-index:
|
|
2885 |
dataset:
|
2886 |
type: mteb/sts17-crosslingual-sts
|
2887 |
name: MTEB STS17 (ar-ar)
|
|
|
|
|
2888 |
metrics:
|
2889 |
- type: cos_sim_pearson
|
2890 |
value: 53.27469278912148
|
@@ -2903,6 +3253,8 @@ model-index:
|
|
2903 |
dataset:
|
2904 |
type: mteb/sts17-crosslingual-sts
|
2905 |
name: MTEB STS17 (en-ar)
|
|
|
|
|
2906 |
metrics:
|
2907 |
- type: cos_sim_pearson
|
2908 |
value: 1.5482997790039945
|
@@ -2921,6 +3273,8 @@ model-index:
|
|
2921 |
dataset:
|
2922 |
type: mteb/sts17-crosslingual-sts
|
2923 |
name: MTEB STS17 (en-de)
|
|
|
|
|
2924 |
metrics:
|
2925 |
- type: cos_sim_pearson
|
2926 |
value: 27.5420218362265
|
@@ -2939,6 +3293,8 @@ model-index:
|
|
2939 |
dataset:
|
2940 |
type: mteb/sts17-crosslingual-sts
|
2941 |
name: MTEB STS17 (en-en)
|
|
|
|
|
2942 |
metrics:
|
2943 |
- type: cos_sim_pearson
|
2944 |
value: 85.32029757646663
|
@@ -2957,6 +3313,8 @@ model-index:
|
|
2957 |
dataset:
|
2958 |
type: mteb/sts17-crosslingual-sts
|
2959 |
name: MTEB STS17 (en-tr)
|
|
|
|
|
2960 |
metrics:
|
2961 |
- type: cos_sim_pearson
|
2962 |
value: 4.37162299241808
|
@@ -2975,6 +3333,8 @@ model-index:
|
|
2975 |
dataset:
|
2976 |
type: mteb/sts17-crosslingual-sts
|
2977 |
name: MTEB STS17 (es-en)
|
|
|
|
|
2978 |
metrics:
|
2979 |
- type: cos_sim_pearson
|
2980 |
value: 20.306030448858603
|
@@ -2993,6 +3353,8 @@ model-index:
|
|
2993 |
dataset:
|
2994 |
type: mteb/sts17-crosslingual-sts
|
2995 |
name: MTEB STS17 (es-es)
|
|
|
|
|
2996 |
metrics:
|
2997 |
- type: cos_sim_pearson
|
2998 |
value: 66.81873207478459
|
@@ -3011,6 +3373,8 @@ model-index:
|
|
3011 |
dataset:
|
3012 |
type: mteb/sts17-crosslingual-sts
|
3013 |
name: MTEB STS17 (fr-en)
|
|
|
|
|
3014 |
metrics:
|
3015 |
- type: cos_sim_pearson
|
3016 |
value: 21.366487281202602
|
@@ -3029,6 +3393,8 @@ model-index:
|
|
3029 |
dataset:
|
3030 |
type: mteb/sts17-crosslingual-sts
|
3031 |
name: MTEB STS17 (it-en)
|
|
|
|
|
3032 |
metrics:
|
3033 |
- type: cos_sim_pearson
|
3034 |
value: 20.73153177251085
|
@@ -3047,6 +3413,8 @@ model-index:
|
|
3047 |
dataset:
|
3048 |
type: mteb/sts17-crosslingual-sts
|
3049 |
name: MTEB STS17 (nl-en)
|
|
|
|
|
3050 |
metrics:
|
3051 |
- type: cos_sim_pearson
|
3052 |
value: 26.618435024084253
|
@@ -3065,6 +3433,8 @@ model-index:
|
|
3065 |
dataset:
|
3066 |
type: mteb/sts22-crosslingual-sts
|
3067 |
name: MTEB STS22 (en)
|
|
|
|
|
3068 |
metrics:
|
3069 |
- type: cos_sim_pearson
|
3070 |
value: 59.17638344661753
|
@@ -3083,6 +3453,8 @@ model-index:
|
|
3083 |
dataset:
|
3084 |
type: mteb/sts22-crosslingual-sts
|
3085 |
name: MTEB STS22 (de)
|
|
|
|
|
3086 |
metrics:
|
3087 |
- type: cos_sim_pearson
|
3088 |
value: 10.322254716987457
|
@@ -3101,6 +3473,8 @@ model-index:
|
|
3101 |
dataset:
|
3102 |
type: mteb/sts22-crosslingual-sts
|
3103 |
name: MTEB STS22 (es)
|
|
|
|
|
3104 |
metrics:
|
3105 |
- type: cos_sim_pearson
|
3106 |
value: 43.38031880545056
|
@@ -3119,6 +3493,8 @@ model-index:
|
|
3119 |
dataset:
|
3120 |
type: mteb/sts22-crosslingual-sts
|
3121 |
name: MTEB STS22 (pl)
|
|
|
|
|
3122 |
metrics:
|
3123 |
- type: cos_sim_pearson
|
3124 |
value: 4.291290504363136
|
@@ -3137,6 +3513,8 @@ model-index:
|
|
3137 |
dataset:
|
3138 |
type: mteb/sts22-crosslingual-sts
|
3139 |
name: MTEB STS22 (tr)
|
|
|
|
|
3140 |
metrics:
|
3141 |
- type: cos_sim_pearson
|
3142 |
value: 4.102739498555817
|
@@ -3155,6 +3533,8 @@ model-index:
|
|
3155 |
dataset:
|
3156 |
type: mteb/sts22-crosslingual-sts
|
3157 |
name: MTEB STS22 (ar)
|
|
|
|
|
3158 |
metrics:
|
3159 |
- type: cos_sim_pearson
|
3160 |
value: 2.38765395226737
|
@@ -3173,6 +3553,8 @@ model-index:
|
|
3173 |
dataset:
|
3174 |
type: mteb/sts22-crosslingual-sts
|
3175 |
name: MTEB STS22 (ru)
|
|
|
|
|
3176 |
metrics:
|
3177 |
- type: cos_sim_pearson
|
3178 |
value: 7.6735490672676345
|
@@ -3191,6 +3573,8 @@ model-index:
|
|
3191 |
dataset:
|
3192 |
type: mteb/sts22-crosslingual-sts
|
3193 |
name: MTEB STS22 (zh)
|
|
|
|
|
3194 |
metrics:
|
3195 |
- type: cos_sim_pearson
|
3196 |
value: 0.06167614416104335
|
@@ -3209,6 +3593,8 @@ model-index:
|
|
3209 |
dataset:
|
3210 |
type: mteb/sts22-crosslingual-sts
|
3211 |
name: MTEB STS22 (fr)
|
|
|
|
|
3212 |
metrics:
|
3213 |
- type: cos_sim_pearson
|
3214 |
value: 53.19490347682836
|
@@ -3227,6 +3613,8 @@ model-index:
|
|
3227 |
dataset:
|
3228 |
type: mteb/sts22-crosslingual-sts
|
3229 |
name: MTEB STS22 (de-en)
|
|
|
|
|
3230 |
metrics:
|
3231 |
- type: cos_sim_pearson
|
3232 |
value: 51.151158530122146
|
@@ -3245,6 +3633,8 @@ model-index:
|
|
3245 |
dataset:
|
3246 |
type: mteb/sts22-crosslingual-sts
|
3247 |
name: MTEB STS22 (es-en)
|
|
|
|
|
3248 |
metrics:
|
3249 |
- type: cos_sim_pearson
|
3250 |
value: 30.36194885126792
|
@@ -3263,6 +3653,8 @@ model-index:
|
|
3263 |
dataset:
|
3264 |
type: mteb/sts22-crosslingual-sts
|
3265 |
name: MTEB STS22 (it)
|
|
|
|
|
3266 |
metrics:
|
3267 |
- type: cos_sim_pearson
|
3268 |
value: 35.23883630335275
|
@@ -3281,6 +3673,8 @@ model-index:
|
|
3281 |
dataset:
|
3282 |
type: mteb/sts22-crosslingual-sts
|
3283 |
name: MTEB STS22 (pl-en)
|
|
|
|
|
3284 |
metrics:
|
3285 |
- type: cos_sim_pearson
|
3286 |
value: 19.809302548119547
|
@@ -3299,6 +3693,8 @@ model-index:
|
|
3299 |
dataset:
|
3300 |
type: mteb/sts22-crosslingual-sts
|
3301 |
name: MTEB STS22 (zh-en)
|
|
|
|
|
3302 |
metrics:
|
3303 |
- type: cos_sim_pearson
|
3304 |
value: 20.393500955410488
|
@@ -3317,6 +3713,8 @@ model-index:
|
|
3317 |
dataset:
|
3318 |
type: mteb/sts22-crosslingual-sts
|
3319 |
name: MTEB STS22 (es-it)
|
|
|
|
|
3320 |
metrics:
|
3321 |
- type: cos_sim_pearson
|
3322 |
value: 36.58919983075148
|
@@ -3335,6 +3733,8 @@ model-index:
|
|
3335 |
dataset:
|
3336 |
type: mteb/sts22-crosslingual-sts
|
3337 |
name: MTEB STS22 (de-fr)
|
|
|
|
|
3338 |
metrics:
|
3339 |
- type: cos_sim_pearson
|
3340 |
value: 26.350936227950083
|
@@ -3353,6 +3753,8 @@ model-index:
|
|
3353 |
dataset:
|
3354 |
type: mteb/sts22-crosslingual-sts
|
3355 |
name: MTEB STS22 (de-pl)
|
|
|
|
|
3356 |
metrics:
|
3357 |
- type: cos_sim_pearson
|
3358 |
value: 20.056269198600322
|
@@ -3371,6 +3773,8 @@ model-index:
|
|
3371 |
dataset:
|
3372 |
type: mteb/sts22-crosslingual-sts
|
3373 |
name: MTEB STS22 (fr-pl)
|
|
|
|
|
3374 |
metrics:
|
3375 |
- type: cos_sim_pearson
|
3376 |
value: 19.563740271419395
|
@@ -3389,6 +3793,8 @@ model-index:
|
|
3389 |
dataset:
|
3390 |
type: mteb/stsbenchmark-sts
|
3391 |
name: MTEB STSBenchmark
|
|
|
|
|
3392 |
metrics:
|
3393 |
- type: cos_sim_pearson
|
3394 |
value: 80.00905671833966
|
@@ -3407,6 +3813,8 @@ model-index:
|
|
3407 |
dataset:
|
3408 |
type: mteb/scidocs-reranking
|
3409 |
name: MTEB SciDocsRR
|
|
|
|
|
3410 |
metrics:
|
3411 |
- type: map
|
3412 |
value: 68.35710819755543
|
@@ -3417,6 +3825,8 @@ model-index:
|
|
3417 |
dataset:
|
3418 |
type: scifact
|
3419 |
name: MTEB SciFact
|
|
|
|
|
3420 |
metrics:
|
3421 |
- type: map_at_1
|
3422 |
value: 21.556
|
@@ -3471,6 +3881,8 @@ model-index:
|
|
3471 |
dataset:
|
3472 |
type: mteb/sprintduplicatequestions-pairclassification
|
3473 |
name: MTEB SprintDuplicateQuestions
|
|
|
|
|
3474 |
metrics:
|
3475 |
- type: cos_sim_accuracy
|
3476 |
value: 99.49306930693069
|
@@ -3523,6 +3935,8 @@ model-index:
|
|
3523 |
dataset:
|
3524 |
type: mteb/stackexchange-clustering
|
3525 |
name: MTEB StackExchangeClustering
|
|
|
|
|
3526 |
metrics:
|
3527 |
- type: v_measure
|
3528 |
value: 44.59127540530939
|
@@ -3531,6 +3945,8 @@ model-index:
|
|
3531 |
dataset:
|
3532 |
type: mteb/stackexchange-clustering-p2p
|
3533 |
name: MTEB StackExchangeClusteringP2P
|
|
|
|
|
3534 |
metrics:
|
3535 |
- type: v_measure
|
3536 |
value: 28.230204578753636
|
@@ -3539,6 +3955,8 @@ model-index:
|
|
3539 |
dataset:
|
3540 |
type: mteb/stackoverflowdupquestions-reranking
|
3541 |
name: MTEB StackOverflowDupQuestions
|
|
|
|
|
3542 |
metrics:
|
3543 |
- type: map
|
3544 |
value: 39.96520488022785
|
@@ -3549,6 +3967,8 @@ model-index:
|
|
3549 |
dataset:
|
3550 |
type: mteb/summeval
|
3551 |
name: MTEB SummEval
|
|
|
|
|
3552 |
metrics:
|
3553 |
- type: cos_sim_pearson
|
3554 |
value: 30.56303767714449
|
@@ -3563,6 +3983,8 @@ model-index:
|
|
3563 |
dataset:
|
3564 |
type: trec-covid
|
3565 |
name: MTEB TRECCOVID
|
|
|
|
|
3566 |
metrics:
|
3567 |
- type: map_at_1
|
3568 |
value: 0.11299999999999999
|
@@ -3617,6 +4039,8 @@ model-index:
|
|
3617 |
dataset:
|
3618 |
type: webis-touche2020
|
3619 |
name: MTEB Touche2020
|
|
|
|
|
3620 |
metrics:
|
3621 |
- type: map_at_1
|
3622 |
value: 0.645
|
@@ -3671,6 +4095,8 @@ model-index:
|
|
3671 |
dataset:
|
3672 |
type: mteb/toxic_conversations_50k
|
3673 |
name: MTEB ToxicConversationsClassification
|
|
|
|
|
3674 |
metrics:
|
3675 |
- type: accuracy
|
3676 |
value: 62.7862
|
@@ -3683,6 +4109,8 @@ model-index:
|
|
3683 |
dataset:
|
3684 |
type: mteb/tweet_sentiment_extraction
|
3685 |
name: MTEB TweetSentimentExtractionClassification
|
|
|
|
|
3686 |
metrics:
|
3687 |
- type: accuracy
|
3688 |
value: 54.821731748726656
|
@@ -3693,6 +4121,8 @@ model-index:
|
|
3693 |
dataset:
|
3694 |
type: mteb/twentynewsgroups-clustering
|
3695 |
name: MTEB TwentyNewsgroupsClustering
|
|
|
|
|
3696 |
metrics:
|
3697 |
- type: v_measure
|
3698 |
value: 28.24295128553035
|
@@ -3701,6 +4131,8 @@ model-index:
|
|
3701 |
dataset:
|
3702 |
type: mteb/twittersemeval2015-pairclassification
|
3703 |
name: MTEB TwitterSemEval2015
|
|
|
|
|
3704 |
metrics:
|
3705 |
- type: cos_sim_accuracy
|
3706 |
value: 81.5640460153782
|
@@ -3753,6 +4185,8 @@ model-index:
|
|
3753 |
dataset:
|
3754 |
type: mteb/twitterurlcorpus-pairclassification
|
3755 |
name: MTEB TwitterURLCorpus
|
|
|
|
|
3756 |
metrics:
|
3757 |
- type: cos_sim_accuracy
|
3758 |
value: 86.63018589668955
|
|
|
13 |
dataset:
|
14 |
type: mteb/amazon_counterfactual
|
15 |
name: MTEB AmazonCounterfactualClassification (en)
|
16 |
+
config: en
|
17 |
+
split: test
|
18 |
metrics:
|
19 |
- type: accuracy
|
20 |
value: 65.88059701492537
|
|
|
27 |
dataset:
|
28 |
type: mteb/amazon_counterfactual
|
29 |
name: MTEB AmazonCounterfactualClassification (de)
|
30 |
+
config: de
|
31 |
+
split: test
|
32 |
metrics:
|
33 |
- type: accuracy
|
34 |
value: 59.07922912205568
|
|
|
41 |
dataset:
|
42 |
type: mteb/amazon_counterfactual
|
43 |
name: MTEB AmazonCounterfactualClassification (en-ext)
|
44 |
+
config: en-ext
|
45 |
+
split: test
|
46 |
metrics:
|
47 |
- type: accuracy
|
48 |
value: 64.91754122938531
|
|
|
55 |
dataset:
|
56 |
type: mteb/amazon_counterfactual
|
57 |
name: MTEB AmazonCounterfactualClassification (ja)
|
58 |
+
config: ja
|
59 |
+
split: test
|
60 |
metrics:
|
61 |
- type: accuracy
|
62 |
value: 56.423982869378996
|
|
|
69 |
dataset:
|
70 |
type: mteb/amazon_polarity
|
71 |
name: MTEB AmazonPolarityClassification
|
72 |
+
config: default
|
73 |
+
split: test
|
74 |
metrics:
|
75 |
- type: accuracy
|
76 |
value: 74.938225
|
|
|
83 |
dataset:
|
84 |
type: mteb/amazon_reviews_multi
|
85 |
name: MTEB AmazonReviewsClassification (en)
|
86 |
+
config: en
|
87 |
+
split: test
|
88 |
metrics:
|
89 |
- type: accuracy
|
90 |
value: 35.098
|
|
|
95 |
dataset:
|
96 |
type: mteb/amazon_reviews_multi
|
97 |
name: MTEB AmazonReviewsClassification (de)
|
98 |
+
config: de
|
99 |
+
split: test
|
100 |
metrics:
|
101 |
- type: accuracy
|
102 |
value: 24.516
|
|
|
107 |
dataset:
|
108 |
type: mteb/amazon_reviews_multi
|
109 |
name: MTEB AmazonReviewsClassification (es)
|
110 |
+
config: es
|
111 |
+
split: test
|
112 |
metrics:
|
113 |
- type: accuracy
|
114 |
value: 29.097999999999995
|
|
|
119 |
dataset:
|
120 |
type: mteb/amazon_reviews_multi
|
121 |
name: MTEB AmazonReviewsClassification (fr)
|
122 |
+
config: fr
|
123 |
+
split: test
|
124 |
metrics:
|
125 |
- type: accuracy
|
126 |
value: 27.395999999999997
|
|
|
131 |
dataset:
|
132 |
type: mteb/amazon_reviews_multi
|
133 |
name: MTEB AmazonReviewsClassification (ja)
|
134 |
+
config: ja
|
135 |
+
split: test
|
136 |
metrics:
|
137 |
- type: accuracy
|
138 |
value: 21.724
|
|
|
143 |
dataset:
|
144 |
type: mteb/amazon_reviews_multi
|
145 |
name: MTEB AmazonReviewsClassification (zh)
|
146 |
+
config: zh
|
147 |
+
split: test
|
148 |
metrics:
|
149 |
- type: accuracy
|
150 |
value: 23.976
|
|
|
155 |
dataset:
|
156 |
type: arguana
|
157 |
name: MTEB ArguAna
|
158 |
+
config: default
|
159 |
+
split: test
|
160 |
metrics:
|
161 |
- type: map_at_1
|
162 |
value: 13.442000000000002
|
|
|
211 |
dataset:
|
212 |
type: mteb/arxiv-clustering-p2p
|
213 |
name: MTEB ArxivClusteringP2P
|
214 |
+
config: default
|
215 |
+
split: test
|
216 |
metrics:
|
217 |
- type: v_measure
|
218 |
value: 34.742482477870766
|
|
|
221 |
dataset:
|
222 |
type: mteb/arxiv-clustering-s2s
|
223 |
name: MTEB ArxivClusteringS2S
|
224 |
+
config: default
|
225 |
+
split: test
|
226 |
metrics:
|
227 |
- type: v_measure
|
228 |
value: 24.67870651472156
|
|
|
231 |
dataset:
|
232 |
type: mteb/askubuntudupquestions-reranking
|
233 |
name: MTEB AskUbuntuDupQuestions
|
234 |
+
config: default
|
235 |
+
split: test
|
236 |
metrics:
|
237 |
- type: map
|
238 |
value: 52.63439984994702
|
|
|
243 |
dataset:
|
244 |
type: mteb/biosses-sts
|
245 |
name: MTEB BIOSSES
|
246 |
+
config: default
|
247 |
+
split: test
|
248 |
metrics:
|
249 |
- type: cos_sim_pearson
|
250 |
value: 72.78000135012542
|
|
|
263 |
dataset:
|
264 |
type: mteb/bucc-bitext-mining
|
265 |
name: MTEB BUCC (de-en)
|
266 |
+
config: de-en
|
267 |
+
split: test
|
268 |
metrics:
|
269 |
- type: accuracy
|
270 |
value: 1.0960334029227559
|
|
|
279 |
dataset:
|
280 |
type: mteb/bucc-bitext-mining
|
281 |
name: MTEB BUCC (fr-en)
|
282 |
+
config: fr-en
|
283 |
+
split: test
|
284 |
metrics:
|
285 |
- type: accuracy
|
286 |
value: 0.02201188641866608
|
|
|
295 |
dataset:
|
296 |
type: mteb/bucc-bitext-mining
|
297 |
name: MTEB BUCC (ru-en)
|
298 |
+
config: ru-en
|
299 |
+
split: test
|
300 |
metrics:
|
301 |
- type: accuracy
|
302 |
value: 0.0
|
|
|
311 |
dataset:
|
312 |
type: mteb/bucc-bitext-mining
|
313 |
name: MTEB BUCC (zh-en)
|
314 |
+
config: zh-en
|
315 |
+
split: test
|
316 |
metrics:
|
317 |
- type: accuracy
|
318 |
value: 0.0
|
|
|
327 |
dataset:
|
328 |
type: mteb/banking77
|
329 |
name: MTEB Banking77Classification
|
330 |
+
config: default
|
331 |
+
split: test
|
332 |
metrics:
|
333 |
- type: accuracy
|
334 |
value: 74.67857142857142
|
|
|
339 |
dataset:
|
340 |
type: mteb/biorxiv-clustering-p2p
|
341 |
name: MTEB BiorxivClusteringP2P
|
342 |
+
config: default
|
343 |
+
split: test
|
344 |
metrics:
|
345 |
- type: v_measure
|
346 |
value: 28.93427045246491
|
|
|
349 |
dataset:
|
350 |
type: mteb/biorxiv-clustering-s2s
|
351 |
name: MTEB BiorxivClusteringS2S
|
352 |
+
config: default
|
353 |
+
split: test
|
354 |
metrics:
|
355 |
- type: v_measure
|
356 |
value: 23.080939123955474
|
|
|
359 |
dataset:
|
360 |
type: BeIR/cqadupstack
|
361 |
name: MTEB CQADupstackAndroidRetrieval
|
362 |
+
config: default
|
363 |
+
split: test
|
364 |
metrics:
|
365 |
- type: map_at_1
|
366 |
value: 18.221999999999998
|
|
|
415 |
dataset:
|
416 |
type: BeIR/cqadupstack
|
417 |
name: MTEB CQADupstackEnglishRetrieval
|
418 |
+
config: default
|
419 |
+
split: test
|
420 |
metrics:
|
421 |
- type: map_at_1
|
422 |
value: 12.058
|
|
|
471 |
dataset:
|
472 |
type: BeIR/cqadupstack
|
473 |
name: MTEB CQADupstackGamingRetrieval
|
474 |
+
config: default
|
475 |
+
split: test
|
476 |
metrics:
|
477 |
- type: map_at_1
|
478 |
value: 21.183
|
|
|
527 |
dataset:
|
528 |
type: BeIR/cqadupstack
|
529 |
name: MTEB CQADupstackGisRetrieval
|
530 |
+
config: default
|
531 |
+
split: test
|
532 |
metrics:
|
533 |
- type: map_at_1
|
534 |
value: 11.350999999999999
|
|
|
583 |
dataset:
|
584 |
type: BeIR/cqadupstack
|
585 |
name: MTEB CQADupstackMathematicaRetrieval
|
586 |
+
config: default
|
587 |
+
split: test
|
588 |
metrics:
|
589 |
- type: map_at_1
|
590 |
value: 8.08
|
|
|
639 |
dataset:
|
640 |
type: BeIR/cqadupstack
|
641 |
name: MTEB CQADupstackPhysicsRetrieval
|
642 |
+
config: default
|
643 |
+
split: test
|
644 |
metrics:
|
645 |
- type: map_at_1
|
646 |
value: 13.908999999999999
|
|
|
695 |
dataset:
|
696 |
type: BeIR/cqadupstack
|
697 |
name: MTEB CQADupstackProgrammersRetrieval
|
698 |
+
config: default
|
699 |
+
split: test
|
700 |
metrics:
|
701 |
- type: map_at_1
|
702 |
value: 12.598
|
|
|
751 |
dataset:
|
752 |
type: BeIR/cqadupstack
|
753 |
name: MTEB CQADupstackRetrieval
|
754 |
+
config: default
|
755 |
+
split: test
|
756 |
metrics:
|
757 |
- type: map_at_1
|
758 |
value: 12.738416666666666
|
|
|
807 |
dataset:
|
808 |
type: BeIR/cqadupstack
|
809 |
name: MTEB CQADupstackStatsRetrieval
|
810 |
+
config: default
|
811 |
+
split: test
|
812 |
metrics:
|
813 |
- type: map_at_1
|
814 |
value: 12.307
|
|
|
863 |
dataset:
|
864 |
type: BeIR/cqadupstack
|
865 |
name: MTEB CQADupstackTexRetrieval
|
866 |
+
config: default
|
867 |
+
split: test
|
868 |
metrics:
|
869 |
- type: map_at_1
|
870 |
value: 6.496
|
|
|
919 |
dataset:
|
920 |
type: BeIR/cqadupstack
|
921 |
name: MTEB CQADupstackUnixRetrieval
|
922 |
+
config: default
|
923 |
+
split: test
|
924 |
metrics:
|
925 |
- type: map_at_1
|
926 |
value: 13.843
|
|
|
975 |
dataset:
|
976 |
type: BeIR/cqadupstack
|
977 |
name: MTEB CQADupstackWebmastersRetrieval
|
978 |
+
config: default
|
979 |
+
split: test
|
980 |
metrics:
|
981 |
- type: map_at_1
|
982 |
value: 13.757
|
|
|
1031 |
dataset:
|
1032 |
type: BeIR/cqadupstack
|
1033 |
name: MTEB CQADupstackWordpressRetrieval
|
1034 |
+
config: default
|
1035 |
+
split: test
|
1036 |
metrics:
|
1037 |
- type: map_at_1
|
1038 |
value: 9.057
|
|
|
1087 |
dataset:
|
1088 |
type: climate-fever
|
1089 |
name: MTEB ClimateFEVER
|
1090 |
+
config: default
|
1091 |
+
split: test
|
1092 |
metrics:
|
1093 |
- type: map_at_1
|
1094 |
value: 3.714
|
|
|
1143 |
dataset:
|
1144 |
type: dbpedia-entity
|
1145 |
name: MTEB DBPedia
|
1146 |
+
config: default
|
1147 |
+
split: test
|
1148 |
metrics:
|
1149 |
- type: map_at_1
|
1150 |
value: 1.764
|
|
|
1199 |
dataset:
|
1200 |
type: mteb/emotion
|
1201 |
name: MTEB EmotionClassification
|
1202 |
+
config: default
|
1203 |
+
split: test
|
1204 |
metrics:
|
1205 |
- type: accuracy
|
1206 |
value: 42.225
|
|
|
1211 |
dataset:
|
1212 |
type: fever
|
1213 |
name: MTEB FEVER
|
1214 |
+
config: default
|
1215 |
+
split: test
|
1216 |
metrics:
|
1217 |
- type: map_at_1
|
1218 |
value: 11.497
|
|
|
1267 |
dataset:
|
1268 |
type: fiqa
|
1269 |
name: MTEB FiQA2018
|
1270 |
+
config: default
|
1271 |
+
split: test
|
1272 |
metrics:
|
1273 |
- type: map_at_1
|
1274 |
value: 3.637
|
|
|
1323 |
dataset:
|
1324 |
type: hotpotqa
|
1325 |
name: MTEB HotpotQA
|
1326 |
+
config: default
|
1327 |
+
split: test
|
1328 |
metrics:
|
1329 |
- type: map_at_1
|
1330 |
value: 9.676
|
|
|
1379 |
dataset:
|
1380 |
type: mteb/imdb
|
1381 |
name: MTEB ImdbClassification
|
1382 |
+
config: default
|
1383 |
+
split: test
|
1384 |
metrics:
|
1385 |
- type: accuracy
|
1386 |
value: 62.895999999999994
|
|
|
1393 |
dataset:
|
1394 |
type: msmarco
|
1395 |
name: MTEB MSMARCO
|
1396 |
+
config: default
|
1397 |
+
split: validation
|
1398 |
metrics:
|
1399 |
- type: map_at_1
|
1400 |
value: 2.88
|
|
|
1449 |
dataset:
|
1450 |
type: mteb/mtop_domain
|
1451 |
name: MTEB MTOPDomainClassification (en)
|
1452 |
+
config: en
|
1453 |
+
split: test
|
1454 |
metrics:
|
1455 |
- type: accuracy
|
1456 |
value: 81.51846785225717
|
|
|
1461 |
dataset:
|
1462 |
type: mteb/mtop_domain
|
1463 |
name: MTEB MTOPDomainClassification (de)
|
1464 |
+
config: de
|
1465 |
+
split: test
|
1466 |
metrics:
|
1467 |
- type: accuracy
|
1468 |
value: 60.37475345167653
|
|
|
1473 |
dataset:
|
1474 |
type: mteb/mtop_domain
|
1475 |
name: MTEB MTOPDomainClassification (es)
|
1476 |
+
config: es
|
1477 |
+
split: test
|
1478 |
metrics:
|
1479 |
- type: accuracy
|
1480 |
value: 67.36824549699799
|
|
|
1485 |
dataset:
|
1486 |
type: mteb/mtop_domain
|
1487 |
name: MTEB MTOPDomainClassification (fr)
|
1488 |
+
config: fr
|
1489 |
+
split: test
|
1490 |
metrics:
|
1491 |
- type: accuracy
|
1492 |
value: 63.12871907297212
|
|
|
1497 |
dataset:
|
1498 |
type: mteb/mtop_domain
|
1499 |
name: MTEB MTOPDomainClassification (hi)
|
1500 |
+
config: hi
|
1501 |
+
split: test
|
1502 |
metrics:
|
1503 |
- type: accuracy
|
1504 |
value: 47.04553603442094
|
|
|
1509 |
dataset:
|
1510 |
type: mteb/mtop_domain
|
1511 |
name: MTEB MTOPDomainClassification (th)
|
1512 |
+
config: th
|
1513 |
+
split: test
|
1514 |
metrics:
|
1515 |
- type: accuracy
|
1516 |
value: 52.282097649186255
|
|
|
1521 |
dataset:
|
1522 |
type: mteb/mtop_intent
|
1523 |
name: MTEB MTOPIntentClassification (en)
|
1524 |
+
config: en
|
1525 |
+
split: test
|
1526 |
metrics:
|
1527 |
- type: accuracy
|
1528 |
value: 58.2421340629275
|
|
|
1533 |
dataset:
|
1534 |
type: mteb/mtop_intent
|
1535 |
name: MTEB MTOPIntentClassification (de)
|
1536 |
+
config: de
|
1537 |
+
split: test
|
1538 |
metrics:
|
1539 |
- type: accuracy
|
1540 |
value: 45.069033530571986
|
|
|
1545 |
dataset:
|
1546 |
type: mteb/mtop_intent
|
1547 |
name: MTEB MTOPIntentClassification (es)
|
1548 |
+
config: es
|
1549 |
+
split: test
|
1550 |
metrics:
|
1551 |
- type: accuracy
|
1552 |
value: 48.80920613742495
|
|
|
1557 |
dataset:
|
1558 |
type: mteb/mtop_intent
|
1559 |
name: MTEB MTOPIntentClassification (fr)
|
1560 |
+
config: fr
|
1561 |
+
split: test
|
1562 |
metrics:
|
1563 |
- type: accuracy
|
1564 |
value: 44.337613529595984
|
|
|
1569 |
dataset:
|
1570 |
type: mteb/mtop_intent
|
1571 |
name: MTEB MTOPIntentClassification (hi)
|
1572 |
+
config: hi
|
1573 |
+
split: test
|
1574 |
metrics:
|
1575 |
- type: accuracy
|
1576 |
value: 34.198637504481894
|
|
|
1581 |
dataset:
|
1582 |
type: mteb/mtop_intent
|
1583 |
name: MTEB MTOPIntentClassification (th)
|
1584 |
+
config: th
|
1585 |
+
split: test
|
1586 |
metrics:
|
1587 |
- type: accuracy
|
1588 |
value: 43.11030741410488
|
|
|
1593 |
dataset:
|
1594 |
type: mteb/amazon_massive_intent
|
1595 |
name: MTEB MassiveIntentClassification (af)
|
1596 |
+
config: af
|
1597 |
+
split: test
|
1598 |
metrics:
|
1599 |
- type: accuracy
|
1600 |
value: 37.79421654337593
|
|
|
1605 |
dataset:
|
1606 |
type: mteb/amazon_massive_intent
|
1607 |
name: MTEB MassiveIntentClassification (am)
|
1608 |
+
config: am
|
1609 |
+
split: test
|
1610 |
metrics:
|
1611 |
- type: accuracy
|
1612 |
value: 23.722259583053127
|
|
|
1617 |
dataset:
|
1618 |
type: mteb/amazon_massive_intent
|
1619 |
name: MTEB MassiveIntentClassification (ar)
|
1620 |
+
config: ar
|
1621 |
+
split: test
|
1622 |
metrics:
|
1623 |
- type: accuracy
|
1624 |
value: 29.64021519838601
|
|
|
1629 |
dataset:
|
1630 |
type: mteb/amazon_massive_intent
|
1631 |
name: MTEB MassiveIntentClassification (az)
|
1632 |
+
config: az
|
1633 |
+
split: test
|
1634 |
metrics:
|
1635 |
- type: accuracy
|
1636 |
value: 39.4754539340955
|
|
|
1641 |
dataset:
|
1642 |
type: mteb/amazon_massive_intent
|
1643 |
name: MTEB MassiveIntentClassification (bn)
|
1644 |
+
config: bn
|
1645 |
+
split: test
|
1646 |
metrics:
|
1647 |
- type: accuracy
|
1648 |
value: 26.550100874243444
|
|
|
1653 |
dataset:
|
1654 |
type: mteb/amazon_massive_intent
|
1655 |
name: MTEB MassiveIntentClassification (cy)
|
1656 |
+
config: cy
|
1657 |
+
split: test
|
1658 |
metrics:
|
1659 |
- type: accuracy
|
1660 |
value: 38.78278412911904
|
|
|
1665 |
dataset:
|
1666 |
type: mteb/amazon_massive_intent
|
1667 |
name: MTEB MassiveIntentClassification (da)
|
1668 |
+
config: da
|
1669 |
+
split: test
|
1670 |
metrics:
|
1671 |
- type: accuracy
|
1672 |
value: 43.557498318762605
|
|
|
1677 |
dataset:
|
1678 |
type: mteb/amazon_massive_intent
|
1679 |
name: MTEB MassiveIntentClassification (de)
|
1680 |
+
config: de
|
1681 |
+
split: test
|
1682 |
metrics:
|
1683 |
- type: accuracy
|
1684 |
value: 40.39340954942838
|
|
|
1689 |
dataset:
|
1690 |
type: mteb/amazon_massive_intent
|
1691 |
name: MTEB MassiveIntentClassification (el)
|
1692 |
+
config: el
|
1693 |
+
split: test
|
1694 |
metrics:
|
1695 |
- type: accuracy
|
1696 |
value: 37.28648285137861
|
|
|
1701 |
dataset:
|
1702 |
type: mteb/amazon_massive_intent
|
1703 |
name: MTEB MassiveIntentClassification (en)
|
1704 |
+
config: en
|
1705 |
+
split: test
|
1706 |
metrics:
|
1707 |
- type: accuracy
|
1708 |
value: 58.080026899798256
|
|
|
1713 |
dataset:
|
1714 |
type: mteb/amazon_massive_intent
|
1715 |
name: MTEB MassiveIntentClassification (es)
|
1716 |
+
config: es
|
1717 |
+
split: test
|
1718 |
metrics:
|
1719 |
- type: accuracy
|
1720 |
value: 41.176866173503704
|
|
|
1725 |
dataset:
|
1726 |
type: mteb/amazon_massive_intent
|
1727 |
name: MTEB MassiveIntentClassification (fa)
|
1728 |
+
config: fa
|
1729 |
+
split: test
|
1730 |
metrics:
|
1731 |
- type: accuracy
|
1732 |
value: 36.422326832548755
|
|
|
1737 |
dataset:
|
1738 |
type: mteb/amazon_massive_intent
|
1739 |
name: MTEB MassiveIntentClassification (fi)
|
1740 |
+
config: fi
|
1741 |
+
split: test
|
1742 |
metrics:
|
1743 |
- type: accuracy
|
1744 |
value: 38.75588433086752
|
|
|
1749 |
dataset:
|
1750 |
type: mteb/amazon_massive_intent
|
1751 |
name: MTEB MassiveIntentClassification (fr)
|
1752 |
+
config: fr
|
1753 |
+
split: test
|
1754 |
metrics:
|
1755 |
- type: accuracy
|
1756 |
value: 43.67182246133153
|
|
|
1761 |
dataset:
|
1762 |
type: mteb/amazon_massive_intent
|
1763 |
name: MTEB MassiveIntentClassification (he)
|
1764 |
+
config: he
|
1765 |
+
split: test
|
1766 |
metrics:
|
1767 |
- type: accuracy
|
1768 |
value: 31.980497646267658
|
|
|
1773 |
dataset:
|
1774 |
type: mteb/amazon_massive_intent
|
1775 |
name: MTEB MassiveIntentClassification (hi)
|
1776 |
+
config: hi
|
1777 |
+
split: test
|
1778 |
metrics:
|
1779 |
- type: accuracy
|
1780 |
value: 28.039677202420982
|
|
|
1785 |
dataset:
|
1786 |
type: mteb/amazon_massive_intent
|
1787 |
name: MTEB MassiveIntentClassification (hu)
|
1788 |
+
config: hu
|
1789 |
+
split: test
|
1790 |
metrics:
|
1791 |
- type: accuracy
|
1792 |
value: 38.13718897108272
|
|
|
1797 |
dataset:
|
1798 |
type: mteb/amazon_massive_intent
|
1799 |
name: MTEB MassiveIntentClassification (hy)
|
1800 |
+
config: hy
|
1801 |
+
split: test
|
1802 |
metrics:
|
1803 |
- type: accuracy
|
1804 |
value: 26.05245460659045
|
|
|
1809 |
dataset:
|
1810 |
type: mteb/amazon_massive_intent
|
1811 |
name: MTEB MassiveIntentClassification (id)
|
1812 |
+
config: id
|
1813 |
+
split: test
|
1814 |
metrics:
|
1815 |
- type: accuracy
|
1816 |
value: 41.156691324815064
|
|
|
1821 |
dataset:
|
1822 |
type: mteb/amazon_massive_intent
|
1823 |
name: MTEB MassiveIntentClassification (is)
|
1824 |
+
config: is
|
1825 |
+
split: test
|
1826 |
metrics:
|
1827 |
- type: accuracy
|
1828 |
value: 38.62811028917284
|
|
|
1833 |
dataset:
|
1834 |
type: mteb/amazon_massive_intent
|
1835 |
name: MTEB MassiveIntentClassification (it)
|
1836 |
+
config: it
|
1837 |
+
split: test
|
1838 |
metrics:
|
1839 |
- type: accuracy
|
1840 |
value: 44.0383322125084
|
|
|
1845 |
dataset:
|
1846 |
type: mteb/amazon_massive_intent
|
1847 |
name: MTEB MassiveIntentClassification (ja)
|
1848 |
+
config: ja
|
1849 |
+
split: test
|
1850 |
metrics:
|
1851 |
- type: accuracy
|
1852 |
value: 46.20712844653666
|
|
|
1857 |
dataset:
|
1858 |
type: mteb/amazon_massive_intent
|
1859 |
name: MTEB MassiveIntentClassification (jv)
|
1860 |
+
config: jv
|
1861 |
+
split: test
|
1862 |
metrics:
|
1863 |
- type: accuracy
|
1864 |
value: 37.60591795561533
|
|
|
1869 |
dataset:
|
1870 |
type: mteb/amazon_massive_intent
|
1871 |
name: MTEB MassiveIntentClassification (ka)
|
1872 |
+
config: ka
|
1873 |
+
split: test
|
1874 |
metrics:
|
1875 |
- type: accuracy
|
1876 |
value: 24.47209145931405
|
|
|
1881 |
dataset:
|
1882 |
type: mteb/amazon_massive_intent
|
1883 |
name: MTEB MassiveIntentClassification (km)
|
1884 |
+
config: km
|
1885 |
+
split: test
|
1886 |
metrics:
|
1887 |
- type: accuracy
|
1888 |
value: 26.23739071956961
|
|
|
1893 |
dataset:
|
1894 |
type: mteb/amazon_massive_intent
|
1895 |
name: MTEB MassiveIntentClassification (kn)
|
1896 |
+
config: kn
|
1897 |
+
split: test
|
1898 |
metrics:
|
1899 |
- type: accuracy
|
1900 |
value: 17.831203765971754
|
|
|
1905 |
dataset:
|
1906 |
type: mteb/amazon_massive_intent
|
1907 |
name: MTEB MassiveIntentClassification (ko)
|
1908 |
+
config: ko
|
1909 |
+
split: test
|
1910 |
metrics:
|
1911 |
- type: accuracy
|
1912 |
value: 37.266308002689975
|
|
|
1917 |
dataset:
|
1918 |
type: mteb/amazon_massive_intent
|
1919 |
name: MTEB MassiveIntentClassification (lv)
|
1920 |
+
config: lv
|
1921 |
+
split: test
|
1922 |
metrics:
|
1923 |
- type: accuracy
|
1924 |
value: 40.93140551445864
|
|
|
1929 |
dataset:
|
1930 |
type: mteb/amazon_massive_intent
|
1931 |
name: MTEB MassiveIntentClassification (ml)
|
1932 |
+
config: ml
|
1933 |
+
split: test
|
1934 |
metrics:
|
1935 |
- type: accuracy
|
1936 |
value: 17.88500336247478
|
|
|
1941 |
dataset:
|
1942 |
type: mteb/amazon_massive_intent
|
1943 |
name: MTEB MassiveIntentClassification (mn)
|
1944 |
+
config: mn
|
1945 |
+
split: test
|
1946 |
metrics:
|
1947 |
- type: accuracy
|
1948 |
value: 32.975790181573636
|
|
|
1953 |
dataset:
|
1954 |
type: mteb/amazon_massive_intent
|
1955 |
name: MTEB MassiveIntentClassification (ms)
|
1956 |
+
config: ms
|
1957 |
+
split: test
|
1958 |
metrics:
|
1959 |
- type: accuracy
|
1960 |
value: 40.91123066577001
|
|
|
1965 |
dataset:
|
1966 |
type: mteb/amazon_massive_intent
|
1967 |
name: MTEB MassiveIntentClassification (my)
|
1968 |
+
config: my
|
1969 |
+
split: test
|
1970 |
metrics:
|
1971 |
- type: accuracy
|
1972 |
value: 17.834566240753194
|
|
|
1977 |
dataset:
|
1978 |
type: mteb/amazon_massive_intent
|
1979 |
name: MTEB MassiveIntentClassification (nb)
|
1980 |
+
config: nb
|
1981 |
+
split: test
|
1982 |
metrics:
|
1983 |
- type: accuracy
|
1984 |
value: 39.47881640887693
|
|
|
1989 |
dataset:
|
1990 |
type: mteb/amazon_massive_intent
|
1991 |
name: MTEB MassiveIntentClassification (nl)
|
1992 |
+
config: nl
|
1993 |
+
split: test
|
1994 |
metrics:
|
1995 |
- type: accuracy
|
1996 |
value: 41.76193678547412
|
|
|
2001 |
dataset:
|
2002 |
type: mteb/amazon_massive_intent
|
2003 |
name: MTEB MassiveIntentClassification (pl)
|
2004 |
+
config: pl
|
2005 |
+
split: test
|
2006 |
metrics:
|
2007 |
- type: accuracy
|
2008 |
value: 42.61936785474109
|
|
|
2013 |
dataset:
|
2014 |
type: mteb/amazon_massive_intent
|
2015 |
name: MTEB MassiveIntentClassification (pt)
|
2016 |
+
config: pt
|
2017 |
+
split: test
|
2018 |
metrics:
|
2019 |
- type: accuracy
|
2020 |
value: 44.54270342972427
|
|
|
2025 |
dataset:
|
2026 |
type: mteb/amazon_massive_intent
|
2027 |
name: MTEB MassiveIntentClassification (ro)
|
2028 |
+
config: ro
|
2029 |
+
split: test
|
2030 |
metrics:
|
2031 |
- type: accuracy
|
2032 |
value: 39.96973772696705
|
|
|
2037 |
dataset:
|
2038 |
type: mteb/amazon_massive_intent
|
2039 |
name: MTEB MassiveIntentClassification (ru)
|
2040 |
+
config: ru
|
2041 |
+
split: test
|
2042 |
metrics:
|
2043 |
- type: accuracy
|
2044 |
value: 37.461331540013454
|
|
|
2049 |
dataset:
|
2050 |
type: mteb/amazon_massive_intent
|
2051 |
name: MTEB MassiveIntentClassification (sl)
|
2052 |
+
config: sl
|
2053 |
+
split: test
|
2054 |
metrics:
|
2055 |
- type: accuracy
|
2056 |
value: 38.28850033624748
|
|
|
2061 |
dataset:
|
2062 |
type: mteb/amazon_massive_intent
|
2063 |
name: MTEB MassiveIntentClassification (sq)
|
2064 |
+
config: sq
|
2065 |
+
split: test
|
2066 |
metrics:
|
2067 |
- type: accuracy
|
2068 |
value: 40.95494283792872
|
|
|
2073 |
dataset:
|
2074 |
type: mteb/amazon_massive_intent
|
2075 |
name: MTEB MassiveIntentClassification (sv)
|
2076 |
+
config: sv
|
2077 |
+
split: test
|
2078 |
metrics:
|
2079 |
- type: accuracy
|
2080 |
value: 41.85272360457296
|
|
|
2085 |
dataset:
|
2086 |
type: mteb/amazon_massive_intent
|
2087 |
name: MTEB MassiveIntentClassification (sw)
|
2088 |
+
config: sw
|
2089 |
+
split: test
|
2090 |
metrics:
|
2091 |
- type: accuracy
|
2092 |
value: 38.328850033624754
|
|
|
2097 |
dataset:
|
2098 |
type: mteb/amazon_massive_intent
|
2099 |
name: MTEB MassiveIntentClassification (ta)
|
2100 |
+
config: ta
|
2101 |
+
split: test
|
2102 |
metrics:
|
2103 |
- type: accuracy
|
2104 |
value: 19.031607262945528
|
|
|
2109 |
dataset:
|
2110 |
type: mteb/amazon_massive_intent
|
2111 |
name: MTEB MassiveIntentClassification (te)
|
2112 |
+
config: te
|
2113 |
+
split: test
|
2114 |
metrics:
|
2115 |
- type: accuracy
|
2116 |
value: 19.38466711499664
|
|
|
2121 |
dataset:
|
2122 |
type: mteb/amazon_massive_intent
|
2123 |
name: MTEB MassiveIntentClassification (th)
|
2124 |
+
config: th
|
2125 |
+
split: test
|
2126 |
metrics:
|
2127 |
- type: accuracy
|
2128 |
value: 34.088769334229994
|
|
|
2133 |
dataset:
|
2134 |
type: mteb/amazon_massive_intent
|
2135 |
name: MTEB MassiveIntentClassification (tl)
|
2136 |
+
config: tl
|
2137 |
+
split: test
|
2138 |
metrics:
|
2139 |
- type: accuracy
|
2140 |
value: 40.285810356422324
|
|
|
2145 |
dataset:
|
2146 |
type: mteb/amazon_massive_intent
|
2147 |
name: MTEB MassiveIntentClassification (tr)
|
2148 |
+
config: tr
|
2149 |
+
split: test
|
2150 |
metrics:
|
2151 |
- type: accuracy
|
2152 |
value: 38.860121049092136
|
|
|
2157 |
dataset:
|
2158 |
type: mteb/amazon_massive_intent
|
2159 |
name: MTEB MassiveIntentClassification (ur)
|
2160 |
+
config: ur
|
2161 |
+
split: test
|
2162 |
metrics:
|
2163 |
- type: accuracy
|
2164 |
value: 27.834566240753194
|
|
|
2169 |
dataset:
|
2170 |
type: mteb/amazon_massive_intent
|
2171 |
name: MTEB MassiveIntentClassification (vi)
|
2172 |
+
config: vi
|
2173 |
+
split: test
|
2174 |
metrics:
|
2175 |
- type: accuracy
|
2176 |
value: 38.70544720914593
|
|
|
2181 |
dataset:
|
2182 |
type: mteb/amazon_massive_intent
|
2183 |
name: MTEB MassiveIntentClassification (zh-CN)
|
2184 |
+
config: zh-CN
|
2185 |
+
split: test
|
2186 |
metrics:
|
2187 |
- type: accuracy
|
2188 |
value: 45.78009414929387
|
|
|
2193 |
dataset:
|
2194 |
type: mteb/amazon_massive_intent
|
2195 |
name: MTEB MassiveIntentClassification (zh-TW)
|
2196 |
+
config: zh-TW
|
2197 |
+
split: test
|
2198 |
metrics:
|
2199 |
- type: accuracy
|
2200 |
value: 42.32010759919301
|
|
|
2205 |
dataset:
|
2206 |
type: mteb/amazon_massive_scenario
|
2207 |
name: MTEB MassiveScenarioClassification (af)
|
2208 |
+
config: af
|
2209 |
+
split: test
|
2210 |
metrics:
|
2211 |
- type: accuracy
|
2212 |
value: 40.24546065904506
|
|
|
2217 |
dataset:
|
2218 |
type: mteb/amazon_massive_scenario
|
2219 |
name: MTEB MassiveScenarioClassification (am)
|
2220 |
+
config: am
|
2221 |
+
split: test
|
2222 |
metrics:
|
2223 |
- type: accuracy
|
2224 |
value: 25.68930733019502
|
|
|
2229 |
dataset:
|
2230 |
type: mteb/amazon_massive_scenario
|
2231 |
name: MTEB MassiveScenarioClassification (ar)
|
2232 |
+
config: ar
|
2233 |
+
split: test
|
2234 |
metrics:
|
2235 |
- type: accuracy
|
2236 |
value: 32.39744451916611
|
|
|
2241 |
dataset:
|
2242 |
type: mteb/amazon_massive_scenario
|
2243 |
name: MTEB MassiveScenarioClassification (az)
|
2244 |
+
config: az
|
2245 |
+
split: test
|
2246 |
metrics:
|
2247 |
- type: accuracy
|
2248 |
value: 40.53127101546738
|
|
|
2253 |
dataset:
|
2254 |
type: mteb/amazon_massive_scenario
|
2255 |
name: MTEB MassiveScenarioClassification (bn)
|
2256 |
+
config: bn
|
2257 |
+
split: test
|
2258 |
metrics:
|
2259 |
- type: accuracy
|
2260 |
value: 27.23268325487559
|
|
|
2265 |
dataset:
|
2266 |
type: mteb/amazon_massive_scenario
|
2267 |
name: MTEB MassiveScenarioClassification (cy)
|
2268 |
+
config: cy
|
2269 |
+
split: test
|
2270 |
metrics:
|
2271 |
- type: accuracy
|
2272 |
value: 38.69872225958305
|
|
|
2277 |
dataset:
|
2278 |
type: mteb/amazon_massive_scenario
|
2279 |
name: MTEB MassiveScenarioClassification (da)
|
2280 |
+
config: da
|
2281 |
+
split: test
|
2282 |
metrics:
|
2283 |
- type: accuracy
|
2284 |
value: 44.75453934095494
|
|
|
2289 |
dataset:
|
2290 |
type: mteb/amazon_massive_scenario
|
2291 |
name: MTEB MassiveScenarioClassification (de)
|
2292 |
+
config: de
|
2293 |
+
split: test
|
2294 |
metrics:
|
2295 |
- type: accuracy
|
2296 |
value: 41.355077336919976
|
|
|
2301 |
dataset:
|
2302 |
type: mteb/amazon_massive_scenario
|
2303 |
name: MTEB MassiveScenarioClassification (el)
|
2304 |
+
config: el
|
2305 |
+
split: test
|
2306 |
metrics:
|
2307 |
- type: accuracy
|
2308 |
value: 38.43981170141224
|
|
|
2313 |
dataset:
|
2314 |
type: mteb/amazon_massive_scenario
|
2315 |
name: MTEB MassiveScenarioClassification (en)
|
2316 |
+
config: en
|
2317 |
+
split: test
|
2318 |
metrics:
|
2319 |
- type: accuracy
|
2320 |
value: 66.33826496301278
|
|
|
2325 |
dataset:
|
2326 |
type: mteb/amazon_massive_scenario
|
2327 |
name: MTEB MassiveScenarioClassification (es)
|
2328 |
+
config: es
|
2329 |
+
split: test
|
2330 |
metrics:
|
2331 |
- type: accuracy
|
2332 |
value: 44.17955615332885
|
|
|
2337 |
dataset:
|
2338 |
type: mteb/amazon_massive_scenario
|
2339 |
name: MTEB MassiveScenarioClassification (fa)
|
2340 |
+
config: fa
|
2341 |
+
split: test
|
2342 |
metrics:
|
2343 |
- type: accuracy
|
2344 |
value: 34.82851378614661
|
|
|
2349 |
dataset:
|
2350 |
type: mteb/amazon_massive_scenario
|
2351 |
name: MTEB MassiveScenarioClassification (fi)
|
2352 |
+
config: fi
|
2353 |
+
split: test
|
2354 |
metrics:
|
2355 |
- type: accuracy
|
2356 |
value: 40.561533288500335
|
|
|
2361 |
dataset:
|
2362 |
type: mteb/amazon_massive_scenario
|
2363 |
name: MTEB MassiveScenarioClassification (fr)
|
2364 |
+
config: fr
|
2365 |
+
split: test
|
2366 |
metrics:
|
2367 |
- type: accuracy
|
2368 |
value: 45.917955615332886
|
|
|
2373 |
dataset:
|
2374 |
type: mteb/amazon_massive_scenario
|
2375 |
name: MTEB MassiveScenarioClassification (he)
|
2376 |
+
config: he
|
2377 |
+
split: test
|
2378 |
metrics:
|
2379 |
- type: accuracy
|
2380 |
value: 32.08473436449227
|
|
|
2385 |
dataset:
|
2386 |
type: mteb/amazon_massive_scenario
|
2387 |
name: MTEB MassiveScenarioClassification (hi)
|
2388 |
+
config: hi
|
2389 |
+
split: test
|
2390 |
metrics:
|
2391 |
- type: accuracy
|
2392 |
value: 28.369199731002016
|
|
|
2397 |
dataset:
|
2398 |
type: mteb/amazon_massive_scenario
|
2399 |
name: MTEB MassiveScenarioClassification (hu)
|
2400 |
+
config: hu
|
2401 |
+
split: test
|
2402 |
metrics:
|
2403 |
- type: accuracy
|
2404 |
value: 39.49226630800269
|
|
|
2409 |
dataset:
|
2410 |
type: mteb/amazon_massive_scenario
|
2411 |
name: MTEB MassiveScenarioClassification (hy)
|
2412 |
+
config: hy
|
2413 |
+
split: test
|
2414 |
metrics:
|
2415 |
- type: accuracy
|
2416 |
value: 25.904505716207133
|
|
|
2421 |
dataset:
|
2422 |
type: mteb/amazon_massive_scenario
|
2423 |
name: MTEB MassiveScenarioClassification (id)
|
2424 |
+
config: id
|
2425 |
+
split: test
|
2426 |
metrics:
|
2427 |
- type: accuracy
|
2428 |
value: 40.95830531271016
|
|
|
2433 |
dataset:
|
2434 |
type: mteb/amazon_massive_scenario
|
2435 |
name: MTEB MassiveScenarioClassification (is)
|
2436 |
+
config: is
|
2437 |
+
split: test
|
2438 |
metrics:
|
2439 |
- type: accuracy
|
2440 |
value: 38.564223268325485
|
|
|
2445 |
dataset:
|
2446 |
type: mteb/amazon_massive_scenario
|
2447 |
name: MTEB MassiveScenarioClassification (it)
|
2448 |
+
config: it
|
2449 |
+
split: test
|
2450 |
metrics:
|
2451 |
- type: accuracy
|
2452 |
value: 46.58708809683928
|
|
|
2457 |
dataset:
|
2458 |
type: mteb/amazon_massive_scenario
|
2459 |
name: MTEB MassiveScenarioClassification (ja)
|
2460 |
+
config: ja
|
2461 |
+
split: test
|
2462 |
metrics:
|
2463 |
- type: accuracy
|
2464 |
value: 46.24747814391393
|
|
|
2469 |
dataset:
|
2470 |
type: mteb/amazon_massive_scenario
|
2471 |
name: MTEB MassiveScenarioClassification (jv)
|
2472 |
+
config: jv
|
2473 |
+
split: test
|
2474 |
metrics:
|
2475 |
- type: accuracy
|
2476 |
value: 39.6570275722932
|
|
|
2481 |
dataset:
|
2482 |
type: mteb/amazon_massive_scenario
|
2483 |
name: MTEB MassiveScenarioClassification (ka)
|
2484 |
+
config: ka
|
2485 |
+
split: test
|
2486 |
metrics:
|
2487 |
- type: accuracy
|
2488 |
value: 25.279085406859448
|
|
|
2493 |
dataset:
|
2494 |
type: mteb/amazon_massive_scenario
|
2495 |
name: MTEB MassiveScenarioClassification (km)
|
2496 |
+
config: km
|
2497 |
+
split: test
|
2498 |
metrics:
|
2499 |
- type: accuracy
|
2500 |
value: 28.97108271687962
|
|
|
2505 |
dataset:
|
2506 |
type: mteb/amazon_massive_scenario
|
2507 |
name: MTEB MassiveScenarioClassification (kn)
|
2508 |
+
config: kn
|
2509 |
+
split: test
|
2510 |
metrics:
|
2511 |
- type: accuracy
|
2512 |
value: 19.27370544720915
|
|
|
2517 |
dataset:
|
2518 |
type: mteb/amazon_massive_scenario
|
2519 |
name: MTEB MassiveScenarioClassification (ko)
|
2520 |
+
config: ko
|
2521 |
+
split: test
|
2522 |
metrics:
|
2523 |
- type: accuracy
|
2524 |
value: 35.729657027572294
|
|
|
2529 |
dataset:
|
2530 |
type: mteb/amazon_massive_scenario
|
2531 |
name: MTEB MassiveScenarioClassification (lv)
|
2532 |
+
config: lv
|
2533 |
+
split: test
|
2534 |
metrics:
|
2535 |
- type: accuracy
|
2536 |
value: 39.57296570275723
|
|
|
2541 |
dataset:
|
2542 |
type: mteb/amazon_massive_scenario
|
2543 |
name: MTEB MassiveScenarioClassification (ml)
|
2544 |
+
config: ml
|
2545 |
+
split: test
|
2546 |
metrics:
|
2547 |
- type: accuracy
|
2548 |
value: 19.895763281775388
|
|
|
2553 |
dataset:
|
2554 |
type: mteb/amazon_massive_scenario
|
2555 |
name: MTEB MassiveScenarioClassification (mn)
|
2556 |
+
config: mn
|
2557 |
+
split: test
|
2558 |
metrics:
|
2559 |
- type: accuracy
|
2560 |
value: 32.431069266980494
|
|
|
2565 |
dataset:
|
2566 |
type: mteb/amazon_massive_scenario
|
2567 |
name: MTEB MassiveScenarioClassification (ms)
|
2568 |
+
config: ms
|
2569 |
+
split: test
|
2570 |
metrics:
|
2571 |
- type: accuracy
|
2572 |
value: 42.32347007397445
|
|
|
2577 |
dataset:
|
2578 |
type: mteb/amazon_massive_scenario
|
2579 |
name: MTEB MassiveScenarioClassification (my)
|
2580 |
+
config: my
|
2581 |
+
split: test
|
2582 |
metrics:
|
2583 |
- type: accuracy
|
2584 |
value: 20.864156018829856
|
|
|
2589 |
dataset:
|
2590 |
type: mteb/amazon_massive_scenario
|
2591 |
name: MTEB MassiveScenarioClassification (nb)
|
2592 |
+
config: nb
|
2593 |
+
split: test
|
2594 |
metrics:
|
2595 |
- type: accuracy
|
2596 |
value: 40.47074646940148
|
|
|
2601 |
dataset:
|
2602 |
type: mteb/amazon_massive_scenario
|
2603 |
name: MTEB MassiveScenarioClassification (nl)
|
2604 |
+
config: nl
|
2605 |
+
split: test
|
2606 |
metrics:
|
2607 |
- type: accuracy
|
2608 |
value: 43.591123066577
|
|
|
2613 |
dataset:
|
2614 |
type: mteb/amazon_massive_scenario
|
2615 |
name: MTEB MassiveScenarioClassification (pl)
|
2616 |
+
config: pl
|
2617 |
+
split: test
|
2618 |
metrics:
|
2619 |
- type: accuracy
|
2620 |
value: 41.876260928043045
|
|
|
2625 |
dataset:
|
2626 |
type: mteb/amazon_massive_scenario
|
2627 |
name: MTEB MassiveScenarioClassification (pt)
|
2628 |
+
config: pt
|
2629 |
+
split: test
|
2630 |
metrics:
|
2631 |
- type: accuracy
|
2632 |
value: 46.30800268997983
|
|
|
2637 |
dataset:
|
2638 |
type: mteb/amazon_massive_scenario
|
2639 |
name: MTEB MassiveScenarioClassification (ro)
|
2640 |
+
config: ro
|
2641 |
+
split: test
|
2642 |
metrics:
|
2643 |
- type: accuracy
|
2644 |
value: 42.525218560860786
|
|
|
2649 |
dataset:
|
2650 |
type: mteb/amazon_massive_scenario
|
2651 |
name: MTEB MassiveScenarioClassification (ru)
|
2652 |
+
config: ru
|
2653 |
+
split: test
|
2654 |
metrics:
|
2655 |
- type: accuracy
|
2656 |
value: 35.94821788836584
|
|
|
2661 |
dataset:
|
2662 |
type: mteb/amazon_massive_scenario
|
2663 |
name: MTEB MassiveScenarioClassification (sl)
|
2664 |
+
config: sl
|
2665 |
+
split: test
|
2666 |
metrics:
|
2667 |
- type: accuracy
|
2668 |
value: 38.69199731002017
|
|
|
2673 |
dataset:
|
2674 |
type: mteb/amazon_massive_scenario
|
2675 |
name: MTEB MassiveScenarioClassification (sq)
|
2676 |
+
config: sq
|
2677 |
+
split: test
|
2678 |
metrics:
|
2679 |
- type: accuracy
|
2680 |
value: 40.474108944182916
|
|
|
2685 |
dataset:
|
2686 |
type: mteb/amazon_massive_scenario
|
2687 |
name: MTEB MassiveScenarioClassification (sv)
|
2688 |
+
config: sv
|
2689 |
+
split: test
|
2690 |
metrics:
|
2691 |
- type: accuracy
|
2692 |
value: 41.523201075991935
|
|
|
2697 |
dataset:
|
2698 |
type: mteb/amazon_massive_scenario
|
2699 |
name: MTEB MassiveScenarioClassification (sw)
|
2700 |
+
config: sw
|
2701 |
+
split: test
|
2702 |
metrics:
|
2703 |
- type: accuracy
|
2704 |
value: 39.54942837928716
|
|
|
2709 |
dataset:
|
2710 |
type: mteb/amazon_massive_scenario
|
2711 |
name: MTEB MassiveScenarioClassification (ta)
|
2712 |
+
config: ta
|
2713 |
+
split: test
|
2714 |
metrics:
|
2715 |
- type: accuracy
|
2716 |
value: 22.8782784129119
|
|
|
2721 |
dataset:
|
2722 |
type: mteb/amazon_massive_scenario
|
2723 |
name: MTEB MassiveScenarioClassification (te)
|
2724 |
+
config: te
|
2725 |
+
split: test
|
2726 |
metrics:
|
2727 |
- type: accuracy
|
2728 |
value: 20.51445864156019
|
|
|
2733 |
dataset:
|
2734 |
type: mteb/amazon_massive_scenario
|
2735 |
name: MTEB MassiveScenarioClassification (th)
|
2736 |
+
config: th
|
2737 |
+
split: test
|
2738 |
metrics:
|
2739 |
- type: accuracy
|
2740 |
value: 34.92602555480834
|
|
|
2745 |
dataset:
|
2746 |
type: mteb/amazon_massive_scenario
|
2747 |
name: MTEB MassiveScenarioClassification (tl)
|
2748 |
+
config: tl
|
2749 |
+
split: test
|
2750 |
metrics:
|
2751 |
- type: accuracy
|
2752 |
value: 40.74983187626093
|
|
|
2757 |
dataset:
|
2758 |
type: mteb/amazon_massive_scenario
|
2759 |
name: MTEB MassiveScenarioClassification (tr)
|
2760 |
+
config: tr
|
2761 |
+
split: test
|
2762 |
metrics:
|
2763 |
- type: accuracy
|
2764 |
value: 39.06859448554136
|
|
|
2769 |
dataset:
|
2770 |
type: mteb/amazon_massive_scenario
|
2771 |
name: MTEB MassiveScenarioClassification (ur)
|
2772 |
+
config: ur
|
2773 |
+
split: test
|
2774 |
metrics:
|
2775 |
- type: accuracy
|
2776 |
value: 29.747814391392062
|
|
|
2781 |
dataset:
|
2782 |
type: mteb/amazon_massive_scenario
|
2783 |
name: MTEB MassiveScenarioClassification (vi)
|
2784 |
+
config: vi
|
2785 |
+
split: test
|
2786 |
metrics:
|
2787 |
- type: accuracy
|
2788 |
value: 38.02286482851379
|
|
|
2793 |
dataset:
|
2794 |
type: mteb/amazon_massive_scenario
|
2795 |
name: MTEB MassiveScenarioClassification (zh-CN)
|
2796 |
+
config: zh-CN
|
2797 |
+
split: test
|
2798 |
metrics:
|
2799 |
- type: accuracy
|
2800 |
value: 48.550773369199725
|
|
|
2805 |
dataset:
|
2806 |
type: mteb/amazon_massive_scenario
|
2807 |
name: MTEB MassiveScenarioClassification (zh-TW)
|
2808 |
+
config: zh-TW
|
2809 |
+
split: test
|
2810 |
metrics:
|
2811 |
- type: accuracy
|
2812 |
value: 45.17821116341628
|
|
|
2817 |
dataset:
|
2818 |
type: mteb/medrxiv-clustering-p2p
|
2819 |
name: MTEB MedrxivClusteringP2P
|
2820 |
+
config: default
|
2821 |
+
split: test
|
2822 |
metrics:
|
2823 |
- type: v_measure
|
2824 |
value: 28.301902023313875
|
|
|
2827 |
dataset:
|
2828 |
type: mteb/medrxiv-clustering-s2s
|
2829 |
name: MTEB MedrxivClusteringS2S
|
2830 |
+
config: default
|
2831 |
+
split: test
|
2832 |
metrics:
|
2833 |
- type: v_measure
|
2834 |
value: 24.932123582259287
|
|
|
2837 |
dataset:
|
2838 |
type: mteb/mind_small
|
2839 |
name: MTEB MindSmallReranking
|
2840 |
+
config: default
|
2841 |
+
split: test
|
2842 |
metrics:
|
2843 |
- type: map
|
2844 |
value: 29.269341041468326
|
|
|
2849 |
dataset:
|
2850 |
type: nfcorpus
|
2851 |
name: MTEB NFCorpus
|
2852 |
+
config: default
|
2853 |
+
split: test
|
2854 |
metrics:
|
2855 |
- type: map_at_1
|
2856 |
value: 1.2269999999999999
|
|
|
2905 |
dataset:
|
2906 |
type: nq
|
2907 |
name: MTEB NQ
|
2908 |
+
config: default
|
2909 |
+
split: test
|
2910 |
metrics:
|
2911 |
- type: map_at_1
|
2912 |
value: 3.515
|
|
|
2961 |
dataset:
|
2962 |
type: quora
|
2963 |
name: MTEB QuoraRetrieval
|
2964 |
+
config: default
|
2965 |
+
split: test
|
2966 |
metrics:
|
2967 |
- type: map_at_1
|
2968 |
value: 61.697
|
|
|
3017 |
dataset:
|
3018 |
type: mteb/reddit-clustering
|
3019 |
name: MTEB RedditClustering
|
3020 |
+
config: default
|
3021 |
+
split: test
|
3022 |
metrics:
|
3023 |
- type: v_measure
|
3024 |
value: 33.75741018380938
|
|
|
3027 |
dataset:
|
3028 |
type: mteb/reddit-clustering-p2p
|
3029 |
name: MTEB RedditClusteringP2P
|
3030 |
+
config: default
|
3031 |
+
split: test
|
3032 |
metrics:
|
3033 |
- type: v_measure
|
3034 |
value: 41.00799910099266
|
|
|
3037 |
dataset:
|
3038 |
type: scidocs
|
3039 |
name: MTEB SCIDOCS
|
3040 |
+
config: default
|
3041 |
+
split: test
|
3042 |
metrics:
|
3043 |
- type: map_at_1
|
3044 |
value: 1.72
|
|
|
3093 |
dataset:
|
3094 |
type: mteb/sickr-sts
|
3095 |
name: MTEB SICK-R
|
3096 |
+
config: default
|
3097 |
+
split: test
|
3098 |
metrics:
|
3099 |
- type: cos_sim_pearson
|
3100 |
value: 80.96286245858941
|
|
|
3113 |
dataset:
|
3114 |
type: mteb/sts12-sts
|
3115 |
name: MTEB STS12
|
3116 |
+
config: default
|
3117 |
+
split: test
|
3118 |
metrics:
|
3119 |
- type: cos_sim_pearson
|
3120 |
value: 80.20938796088339
|
|
|
3133 |
dataset:
|
3134 |
type: mteb/sts13-sts
|
3135 |
name: MTEB STS13
|
3136 |
+
config: default
|
3137 |
+
split: test
|
3138 |
metrics:
|
3139 |
- type: cos_sim_pearson
|
3140 |
value: 76.401935081936
|
|
|
3153 |
dataset:
|
3154 |
type: mteb/sts14-sts
|
3155 |
name: MTEB STS14
|
3156 |
+
config: default
|
3157 |
+
split: test
|
3158 |
metrics:
|
3159 |
- type: cos_sim_pearson
|
3160 |
value: 75.35551963935667
|
|
|
3173 |
dataset:
|
3174 |
type: mteb/sts15-sts
|
3175 |
name: MTEB STS15
|
3176 |
+
config: default
|
3177 |
+
split: test
|
3178 |
metrics:
|
3179 |
- type: cos_sim_pearson
|
3180 |
value: 79.05293131911803
|
|
|
3193 |
dataset:
|
3194 |
type: mteb/sts16-sts
|
3195 |
name: MTEB STS16
|
3196 |
+
config: default
|
3197 |
+
split: test
|
3198 |
metrics:
|
3199 |
- type: cos_sim_pearson
|
3200 |
value: 76.04750373932828
|
|
|
3213 |
dataset:
|
3214 |
type: mteb/sts17-crosslingual-sts
|
3215 |
name: MTEB STS17 (ko-ko)
|
3216 |
+
config: ko-ko
|
3217 |
+
split: test
|
3218 |
metrics:
|
3219 |
- type: cos_sim_pearson
|
3220 |
value: 43.0464619152799
|
|
|
3233 |
dataset:
|
3234 |
type: mteb/sts17-crosslingual-sts
|
3235 |
name: MTEB STS17 (ar-ar)
|
3236 |
+
config: ar-ar
|
3237 |
+
split: test
|
3238 |
metrics:
|
3239 |
- type: cos_sim_pearson
|
3240 |
value: 53.27469278912148
|
|
|
3253 |
dataset:
|
3254 |
type: mteb/sts17-crosslingual-sts
|
3255 |
name: MTEB STS17 (en-ar)
|
3256 |
+
config: en-ar
|
3257 |
+
split: test
|
3258 |
metrics:
|
3259 |
- type: cos_sim_pearson
|
3260 |
value: 1.5482997790039945
|
|
|
3273 |
dataset:
|
3274 |
type: mteb/sts17-crosslingual-sts
|
3275 |
name: MTEB STS17 (en-de)
|
3276 |
+
config: en-de
|
3277 |
+
split: test
|
3278 |
metrics:
|
3279 |
- type: cos_sim_pearson
|
3280 |
value: 27.5420218362265
|
|
|
3293 |
dataset:
|
3294 |
type: mteb/sts17-crosslingual-sts
|
3295 |
name: MTEB STS17 (en-en)
|
3296 |
+
config: en-en
|
3297 |
+
split: test
|
3298 |
metrics:
|
3299 |
- type: cos_sim_pearson
|
3300 |
value: 85.32029757646663
|
|
|
3313 |
dataset:
|
3314 |
type: mteb/sts17-crosslingual-sts
|
3315 |
name: MTEB STS17 (en-tr)
|
3316 |
+
config: en-tr
|
3317 |
+
split: test
|
3318 |
metrics:
|
3319 |
- type: cos_sim_pearson
|
3320 |
value: 4.37162299241808
|
|
|
3333 |
dataset:
|
3334 |
type: mteb/sts17-crosslingual-sts
|
3335 |
name: MTEB STS17 (es-en)
|
3336 |
+
config: es-en
|
3337 |
+
split: test
|
3338 |
metrics:
|
3339 |
- type: cos_sim_pearson
|
3340 |
value: 20.306030448858603
|
|
|
3353 |
dataset:
|
3354 |
type: mteb/sts17-crosslingual-sts
|
3355 |
name: MTEB STS17 (es-es)
|
3356 |
+
config: es-es
|
3357 |
+
split: test
|
3358 |
metrics:
|
3359 |
- type: cos_sim_pearson
|
3360 |
value: 66.81873207478459
|
|
|
3373 |
dataset:
|
3374 |
type: mteb/sts17-crosslingual-sts
|
3375 |
name: MTEB STS17 (fr-en)
|
3376 |
+
config: fr-en
|
3377 |
+
split: test
|
3378 |
metrics:
|
3379 |
- type: cos_sim_pearson
|
3380 |
value: 21.366487281202602
|
|
|
3393 |
dataset:
|
3394 |
type: mteb/sts17-crosslingual-sts
|
3395 |
name: MTEB STS17 (it-en)
|
3396 |
+
config: it-en
|
3397 |
+
split: test
|
3398 |
metrics:
|
3399 |
- type: cos_sim_pearson
|
3400 |
value: 20.73153177251085
|
|
|
3413 |
dataset:
|
3414 |
type: mteb/sts17-crosslingual-sts
|
3415 |
name: MTEB STS17 (nl-en)
|
3416 |
+
config: nl-en
|
3417 |
+
split: test
|
3418 |
metrics:
|
3419 |
- type: cos_sim_pearson
|
3420 |
value: 26.618435024084253
|
|
|
3433 |
dataset:
|
3434 |
type: mteb/sts22-crosslingual-sts
|
3435 |
name: MTEB STS22 (en)
|
3436 |
+
config: en
|
3437 |
+
split: test
|
3438 |
metrics:
|
3439 |
- type: cos_sim_pearson
|
3440 |
value: 59.17638344661753
|
|
|
3453 |
dataset:
|
3454 |
type: mteb/sts22-crosslingual-sts
|
3455 |
name: MTEB STS22 (de)
|
3456 |
+
config: de
|
3457 |
+
split: test
|
3458 |
metrics:
|
3459 |
- type: cos_sim_pearson
|
3460 |
value: 10.322254716987457
|
|
|
3473 |
dataset:
|
3474 |
type: mteb/sts22-crosslingual-sts
|
3475 |
name: MTEB STS22 (es)
|
3476 |
+
config: es
|
3477 |
+
split: test
|
3478 |
metrics:
|
3479 |
- type: cos_sim_pearson
|
3480 |
value: 43.38031880545056
|
|
|
3493 |
dataset:
|
3494 |
type: mteb/sts22-crosslingual-sts
|
3495 |
name: MTEB STS22 (pl)
|
3496 |
+
config: pl
|
3497 |
+
split: test
|
3498 |
metrics:
|
3499 |
- type: cos_sim_pearson
|
3500 |
value: 4.291290504363136
|
|
|
3513 |
dataset:
|
3514 |
type: mteb/sts22-crosslingual-sts
|
3515 |
name: MTEB STS22 (tr)
|
3516 |
+
config: tr
|
3517 |
+
split: test
|
3518 |
metrics:
|
3519 |
- type: cos_sim_pearson
|
3520 |
value: 4.102739498555817
|
|
|
3533 |
dataset:
|
3534 |
type: mteb/sts22-crosslingual-sts
|
3535 |
name: MTEB STS22 (ar)
|
3536 |
+
config: ar
|
3537 |
+
split: test
|
3538 |
metrics:
|
3539 |
- type: cos_sim_pearson
|
3540 |
value: 2.38765395226737
|
|
|
3553 |
dataset:
|
3554 |
type: mteb/sts22-crosslingual-sts
|
3555 |
name: MTEB STS22 (ru)
|
3556 |
+
config: ru
|
3557 |
+
split: test
|
3558 |
metrics:
|
3559 |
- type: cos_sim_pearson
|
3560 |
value: 7.6735490672676345
|
|
|
3573 |
dataset:
|
3574 |
type: mteb/sts22-crosslingual-sts
|
3575 |
name: MTEB STS22 (zh)
|
3576 |
+
config: zh
|
3577 |
+
split: test
|
3578 |
metrics:
|
3579 |
- type: cos_sim_pearson
|
3580 |
value: 0.06167614416104335
|
|
|
3593 |
dataset:
|
3594 |
type: mteb/sts22-crosslingual-sts
|
3595 |
name: MTEB STS22 (fr)
|
3596 |
+
config: fr
|
3597 |
+
split: test
|
3598 |
metrics:
|
3599 |
- type: cos_sim_pearson
|
3600 |
value: 53.19490347682836
|
|
|
3613 |
dataset:
|
3614 |
type: mteb/sts22-crosslingual-sts
|
3615 |
name: MTEB STS22 (de-en)
|
3616 |
+
config: de-en
|
3617 |
+
split: test
|
3618 |
metrics:
|
3619 |
- type: cos_sim_pearson
|
3620 |
value: 51.151158530122146
|
|
|
3633 |
dataset:
|
3634 |
type: mteb/sts22-crosslingual-sts
|
3635 |
name: MTEB STS22 (es-en)
|
3636 |
+
config: es-en
|
3637 |
+
split: test
|
3638 |
metrics:
|
3639 |
- type: cos_sim_pearson
|
3640 |
value: 30.36194885126792
|
|
|
3653 |
dataset:
|
3654 |
type: mteb/sts22-crosslingual-sts
|
3655 |
name: MTEB STS22 (it)
|
3656 |
+
config: it
|
3657 |
+
split: test
|
3658 |
metrics:
|
3659 |
- type: cos_sim_pearson
|
3660 |
value: 35.23883630335275
|
|
|
3673 |
dataset:
|
3674 |
type: mteb/sts22-crosslingual-sts
|
3675 |
name: MTEB STS22 (pl-en)
|
3676 |
+
config: pl-en
|
3677 |
+
split: test
|
3678 |
metrics:
|
3679 |
- type: cos_sim_pearson
|
3680 |
value: 19.809302548119547
|
|
|
3693 |
dataset:
|
3694 |
type: mteb/sts22-crosslingual-sts
|
3695 |
name: MTEB STS22 (zh-en)
|
3696 |
+
config: zh-en
|
3697 |
+
split: test
|
3698 |
metrics:
|
3699 |
- type: cos_sim_pearson
|
3700 |
value: 20.393500955410488
|
|
|
3713 |
dataset:
|
3714 |
type: mteb/sts22-crosslingual-sts
|
3715 |
name: MTEB STS22 (es-it)
|
3716 |
+
config: es-it
|
3717 |
+
split: test
|
3718 |
metrics:
|
3719 |
- type: cos_sim_pearson
|
3720 |
value: 36.58919983075148
|
|
|
3733 |
dataset:
|
3734 |
type: mteb/sts22-crosslingual-sts
|
3735 |
name: MTEB STS22 (de-fr)
|
3736 |
+
config: de-fr
|
3737 |
+
split: test
|
3738 |
metrics:
|
3739 |
- type: cos_sim_pearson
|
3740 |
value: 26.350936227950083
|
|
|
3753 |
dataset:
|
3754 |
type: mteb/sts22-crosslingual-sts
|
3755 |
name: MTEB STS22 (de-pl)
|
3756 |
+
config: de-pl
|
3757 |
+
split: test
|
3758 |
metrics:
|
3759 |
- type: cos_sim_pearson
|
3760 |
value: 20.056269198600322
|
|
|
3773 |
dataset:
|
3774 |
type: mteb/sts22-crosslingual-sts
|
3775 |
name: MTEB STS22 (fr-pl)
|
3776 |
+
config: fr-pl
|
3777 |
+
split: test
|
3778 |
metrics:
|
3779 |
- type: cos_sim_pearson
|
3780 |
value: 19.563740271419395
|
|
|
3793 |
dataset:
|
3794 |
type: mteb/stsbenchmark-sts
|
3795 |
name: MTEB STSBenchmark
|
3796 |
+
config: default
|
3797 |
+
split: test
|
3798 |
metrics:
|
3799 |
- type: cos_sim_pearson
|
3800 |
value: 80.00905671833966
|
|
|
3813 |
dataset:
|
3814 |
type: mteb/scidocs-reranking
|
3815 |
name: MTEB SciDocsRR
|
3816 |
+
config: default
|
3817 |
+
split: test
|
3818 |
metrics:
|
3819 |
- type: map
|
3820 |
value: 68.35710819755543
|
|
|
3825 |
dataset:
|
3826 |
type: scifact
|
3827 |
name: MTEB SciFact
|
3828 |
+
config: default
|
3829 |
+
split: test
|
3830 |
metrics:
|
3831 |
- type: map_at_1
|
3832 |
value: 21.556
|
|
|
3881 |
dataset:
|
3882 |
type: mteb/sprintduplicatequestions-pairclassification
|
3883 |
name: MTEB SprintDuplicateQuestions
|
3884 |
+
config: default
|
3885 |
+
split: test
|
3886 |
metrics:
|
3887 |
- type: cos_sim_accuracy
|
3888 |
value: 99.49306930693069
|
|
|
3935 |
dataset:
|
3936 |
type: mteb/stackexchange-clustering
|
3937 |
name: MTEB StackExchangeClustering
|
3938 |
+
config: default
|
3939 |
+
split: test
|
3940 |
metrics:
|
3941 |
- type: v_measure
|
3942 |
value: 44.59127540530939
|
|
|
3945 |
dataset:
|
3946 |
type: mteb/stackexchange-clustering-p2p
|
3947 |
name: MTEB StackExchangeClusteringP2P
|
3948 |
+
config: default
|
3949 |
+
split: test
|
3950 |
metrics:
|
3951 |
- type: v_measure
|
3952 |
value: 28.230204578753636
|
|
|
3955 |
dataset:
|
3956 |
type: mteb/stackoverflowdupquestions-reranking
|
3957 |
name: MTEB StackOverflowDupQuestions
|
3958 |
+
config: default
|
3959 |
+
split: test
|
3960 |
metrics:
|
3961 |
- type: map
|
3962 |
value: 39.96520488022785
|
|
|
3967 |
dataset:
|
3968 |
type: mteb/summeval
|
3969 |
name: MTEB SummEval
|
3970 |
+
config: default
|
3971 |
+
split: test
|
3972 |
metrics:
|
3973 |
- type: cos_sim_pearson
|
3974 |
value: 30.56303767714449
|
|
|
3983 |
dataset:
|
3984 |
type: trec-covid
|
3985 |
name: MTEB TRECCOVID
|
3986 |
+
config: default
|
3987 |
+
split: test
|
3988 |
metrics:
|
3989 |
- type: map_at_1
|
3990 |
value: 0.11299999999999999
|
|
|
4039 |
dataset:
|
4040 |
type: webis-touche2020
|
4041 |
name: MTEB Touche2020
|
4042 |
+
config: default
|
4043 |
+
split: test
|
4044 |
metrics:
|
4045 |
- type: map_at_1
|
4046 |
value: 0.645
|
|
|
4095 |
dataset:
|
4096 |
type: mteb/toxic_conversations_50k
|
4097 |
name: MTEB ToxicConversationsClassification
|
4098 |
+
config: default
|
4099 |
+
split: test
|
4100 |
metrics:
|
4101 |
- type: accuracy
|
4102 |
value: 62.7862
|
|
|
4109 |
dataset:
|
4110 |
type: mteb/tweet_sentiment_extraction
|
4111 |
name: MTEB TweetSentimentExtractionClassification
|
4112 |
+
config: default
|
4113 |
+
split: test
|
4114 |
metrics:
|
4115 |
- type: accuracy
|
4116 |
value: 54.821731748726656
|
|
|
4121 |
dataset:
|
4122 |
type: mteb/twentynewsgroups-clustering
|
4123 |
name: MTEB TwentyNewsgroupsClustering
|
4124 |
+
config: default
|
4125 |
+
split: test
|
4126 |
metrics:
|
4127 |
- type: v_measure
|
4128 |
value: 28.24295128553035
|
|
|
4131 |
dataset:
|
4132 |
type: mteb/twittersemeval2015-pairclassification
|
4133 |
name: MTEB TwitterSemEval2015
|
4134 |
+
config: default
|
4135 |
+
split: test
|
4136 |
metrics:
|
4137 |
- type: cos_sim_accuracy
|
4138 |
value: 81.5640460153782
|
|
|
4185 |
dataset:
|
4186 |
type: mteb/twitterurlcorpus-pairclassification
|
4187 |
name: MTEB TwitterURLCorpus
|
4188 |
+
config: default
|
4189 |
+
split: test
|
4190 |
metrics:
|
4191 |
- type: cos_sim_accuracy
|
4192 |
value: 86.63018589668955
|