File size: 1,487 Bytes
7741103
a277f38
 
 
7741103
a277f38
 
3ce9834
a277f38
 
 
 
7741103
 
a277f38
7741103
 
a277f38
7741103
04015a3
7741103
a277f38
7741103
a277f38
 
7741103
a277f38
 
 
7741103
a277f38
 
7741103
a277f38
 
 
 
 
 
 
 
7741103
a277f38
 
 
7741103
a277f38
7741103
a277f38
7741103
 
a277f38
7741103
a277f38
b6138cc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- orpo

base_model:
- meta-llama/Meta-Llama-3-8B
datasets:
- mlabonne/orpo-dpo-mix-40k
---

# OrpoLlama3-8B


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/oa8hfBhbPfN6MPWVMJoLq.jpeg)

This is an ORPO fine-tune of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on 15k steps of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k).

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Muhammad2003/OrpoLlama3-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## 📈 Training curves

Wandb Report


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/eFL8QhHbSjY45Ai2JQFj9.png)

## 🏆 Evaluation

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64fc6d81d75293f417fee1d1/E5XZI4Hiaw3C3gThvoKrH.png)