MuntasirHossain
commited on
Commit
•
fb6eb90
1
Parent(s):
71cfa3a
Training complete
Browse files- README.md +94 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: roberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- emotion
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
model-index:
|
14 |
+
- name: RoBERTa-base-finetuned-emotion
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Text Classification
|
18 |
+
type: text-classification
|
19 |
+
dataset:
|
20 |
+
name: emotion
|
21 |
+
type: emotion
|
22 |
+
config: split
|
23 |
+
split: test
|
24 |
+
args: split
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.933
|
29 |
+
- name: Precision
|
30 |
+
type: precision
|
31 |
+
value: 0.8945201216002613
|
32 |
+
- name: Recall
|
33 |
+
type: recall
|
34 |
+
value: 0.9001524297208578
|
35 |
+
- name: F1
|
36 |
+
type: f1
|
37 |
+
value: 0.8967563712384394
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# RoBERTa-base-finetuned-emotion
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the emotion dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1629
|
48 |
+
- Accuracy: 0.933
|
49 |
+
- Precision: 0.8945
|
50 |
+
- Recall: 0.9002
|
51 |
+
- F1: 0.8968
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 32
|
72 |
+
- eval_batch_size: 32
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 5
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
82 |
+
| 0.5693 | 1.0 | 500 | 0.2305 | 0.9215 | 0.8814 | 0.8854 | 0.8818 |
|
83 |
+
| 0.1946 | 2.0 | 1000 | 0.1923 | 0.9235 | 0.8698 | 0.9268 | 0.8899 |
|
84 |
+
| 0.1297 | 3.0 | 1500 | 0.1514 | 0.933 | 0.9060 | 0.8879 | 0.8913 |
|
85 |
+
| 0.1041 | 4.0 | 2000 | 0.1545 | 0.9265 | 0.9165 | 0.8567 | 0.8789 |
|
86 |
+
| 0.0826 | 5.0 | 2500 | 0.1629 | 0.933 | 0.8945 | 0.9002 | 0.8968 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.33.0
|
92 |
+
- Pytorch 2.0.0
|
93 |
+
- Datasets 2.1.0
|
94 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 498669937
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15f3d38f9d2a91fe38d33d6fec26d7d7c49ab4fcd968a6bd3c379308b8f0449b
|
3 |
size 498669937
|