--- license: mit base_model: roberta-base tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - precision - recall - f1 model-index: - name: RoBERTa-base-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: test args: split metrics: - name: Accuracy type: accuracy value: 0.933 - name: Precision type: precision value: 0.8945201216002613 - name: Recall type: recall value: 0.9001524297208578 - name: F1 type: f1 value: 0.8967563712384394 --- # RoBERTa-base-finetuned-emotion This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the [emotion](https://huggingface.co/datasets/dair-ai/emotion) dataset. It achieves the following results on the evaluation set: - Loss: 0.1629 - Accuracy: 0.933 - Precision: 0.8945 - Recall: 0.9002 - F1: 0.8968 ## Model description This is a RoBERTa model fine-tuned on the [emotion](https://huggingface.co/datasets/dair-ai/emotion) to determine whether a text is within any of the six categories: 'sadness', 'joy', 'love', 'anger', 'fear', 'surprise'. The Trainer API was used to train the model. ## Intended uses & limitations ## Training and evaluation data 🤗 ``load_dataset`` package was used to load the data from the hub. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5693 | 1.0 | 500 | 0.2305 | 0.9215 | 0.8814 | 0.8854 | 0.8818 | | 0.1946 | 2.0 | 1000 | 0.1923 | 0.9235 | 0.8698 | 0.9268 | 0.8899 | | 0.1297 | 3.0 | 1500 | 0.1514 | 0.933 | 0.9060 | 0.8879 | 0.8913 | | 0.1041 | 4.0 | 2000 | 0.1545 | 0.9265 | 0.9165 | 0.8567 | 0.8789 | | 0.0826 | 5.0 | 2500 | 0.1629 | 0.933 | 0.8945 | 0.9002 | 0.8968 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3