File size: 2,989 Bytes
57e93e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
base_model: winglian/Llama-3-8b-64k-PoSE
library_name: transformers
tags:
- axolotl
- finetune
- dpo
- facebook
- meta
- pytorch
- llama
- llama-3
- 64k
- pose
language:
- en
pipeline_tag: text-generation
license: llama3
license_name: llama3
license_link: LICENSE
inference: false
model_creator: MaziyarPanahi
model_name: Llama-3-8B-Instruct-64k
quantized_by: MaziyarPanahi
datasets:
- Intel/orca_dpo_pairs
---
<img src="./llama-3-merges.webp" alt="Llama-3 DPO Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# MaziyarPanahi/Llama-3-8B-Instruct-64k
This model has been made based on a great of [@winglian](https://huggingface.co/winglian/) with his latest model [winglian/Llama-3-8b-64k-PoSE](https://huggingface.co/winglian/Llama-3-8b-64k-PoSE/)
> This model uses [PoSE](https://huggingface.co/papers/2309.10400) to extend Llama's context length from 8k to 64k @ rope_theta: 500000.0.
> We used PoSE with continued pretraining on 300M tokens from the RedPajama V1 dataset using data between 6k-8k tokens.
> We have further set rope_theta to 2M after continued pre-training to potentially further extend the context past 64k.
> This was trained on a subset of the RedPajama v1 dataset with text between 6k-8k context. We trained a rank stabilized LoRA of rank 256. [WandB](https://wandb.ai/oaaic/llama-3-64k/runs/tkcyjt37)
# Quantized GGUF
All GGUF models come with context length of `64000`: [MaziyarPanahi/Llama-3-8B-Instruct-64k-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-8B-Instruct-64k-GGUF)
# How to use
You can use this model by using `MaziyarPanahi/Llama-3-8B-Instruct-DPO-v0.3` as the model name in Hugging Face's
transformers library.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch
model_id = "MaziyarPanahi/Llama-3-8B-Instruct-64k"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
# attn_implementation="flash_attention_2"
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
streamer=streamer
)
# Then you can use the pipeline to generate text.
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|im_end|>")
]
outputs = pipeline(
prompt,
max_new_tokens=8192,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.95,
)
print(outputs[0]["generated_text"][len(prompt):])
```
|