--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: validation_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 14.6325 --- # eli5 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 2.2569 - Rouge1: 14.6325 - Rouge2: 2.3714 - Rougel: 11.2941 - Rougelsum: 13.2006 - Gen Len: 18.9911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.4057 | 1.0 | 34080 | 2.2708 | 14.6356 | 2.3501 | 11.3428 | 13.213 | 18.9946 | | 2.3943 | 2.0 | 68160 | 2.2569 | 14.6325 | 2.3714 | 11.2941 | 13.2006 | 18.9911 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0 - Datasets 2.14.5 - Tokenizers 0.14.1