# NanoTranslator-immersive_translate-365M [English](README.md) | 简体中文 ## Introduction NanoTranslator-immersive_translate-365M 是由 [NanoLM-365M-Base](https://huggingface.co/Mxode/NanoLM-365M-Base) 在 [wmt-19](https://huggingface.co/datasets/wmt/wmt19) 数据集上训练了 600 万数据得来的专门用于**中英双语**的翻译模型。 此模型遵循[沉浸式翻译](https://immersivetranslate.com/)(Immersive Translate)的 prompt 格式进行训练,可以通过 vllm、lmdeploy 等方式部署为 OpenAI 格式接口,从而完成调用。 ## How to use 下面是一个用 transformers 调用的方式,prompt 遵循沉浸式翻译以保持最佳效果。 ```python import torch from typing import Literal from transformers import AutoModelForCausalLM, AutoTokenizer model_path = 'Mxode/NanoTranslator-immersive_translate-365M' model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_path) def translate( text: str, to: Literal["chinese", "english"] = "chinese", **kwargs ): generation_args = dict( max_new_tokens = kwargs.pop("max_new_tokens", 512), do_sample = kwargs.pop("do_sample", True), temperature = kwargs.pop("temperature", 0.35), top_p = kwargs.pop("top_p", 0.8), top_k = kwargs.pop("top_k", 40), **kwargs ) prompt = """Translate the following source text to {to}. Output translation directly without any additional text. Source Text: {text} Translated Text:""" messages = [ {"role": "system", "content": "You are a professional, authentic machine translation engine."}, {"role": "user", "content": prompt.format(to=to, text=text)} ] inputs = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([inputs], return_tensors="pt").to(model.device) generated_ids = model.generate(model_inputs.input_ids, **generation_args) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response text = "After a long day at work, I love to unwind by cooking a nice dinner and watching my favorite TV series. It really helps me relax and recharge for the next day." response = translate(text=text, to='chinese') print(f'Translation: {response}') """ Translation: 工作了一天,我喜欢吃一顿美味的晚餐,看我最喜欢的电视剧,这样做有助于我放松,补充能量。 """ ```