Omartificial-Intelligence-Space commited on
Commit
76e6288
1 Parent(s): 7595cfc

Delete Readme.md

Browse files
Files changed (1) hide show
  1. README-4.md +0 -117
README-4.md DELETED
@@ -1,117 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- language:
4
- - ar
5
- pipeline_tag: text-classification
6
- tags:
7
- - transformers
8
- - sentence-transformers
9
- - text-embeddings-inference
10
- ---
11
-
12
- # Introducing ARM-V1 | Arabic Reranker Model (Version 1)
13
-
14
- **For more info please refer to this blog: [ARM | Arabic Reranker Model](www.omarai.me).**
15
-
16
- ✨ This model is designed specifically for Arabic language reranking tasks, optimized to handle queries and passages with precision.
17
-
18
- ✨ Unlike embedding models, which generate vector representations, this reranker directly evaluates the similarity between a question and a document, outputting a relevance score.
19
-
20
- ✨ Trained on a combination of positive and hard negative query-passage pairs, it excels in identifying the most relevant results.
21
-
22
- ✨ The output score can be transformed into a [0, 1] range using a sigmoid function, providing a clear and interpretable measure of relevance.
23
-
24
- ## Arabic RAG Pipeline
25
-
26
-
27
- ![Arabic RAG Pipeline](https://i.ibb.co/z4Fc3Kd/Screenshot-2024-11-28-at-10-17-39-AM.png)
28
-
29
-
30
-
31
- ## Usage
32
- ### Using sentence-transformers
33
-
34
- ```
35
- pip install sentence-transformers
36
- ```
37
- ```python
38
- from sentence_transformers import CrossEncoder
39
-
40
- # Load the cross-encoder model
41
-
42
- # Define a query and a set of candidates with varying degrees of relevance
43
- query = "تطبيقات الذكاء الاصطناعي تُستخدم في مختلف المجالات لتحسين الكفاءة."
44
-
45
- # Candidates with varying relevance to the query
46
- candidates = [
47
- "الذكاء الاصطناعي يساهم في تحسين الإنتاجية في الصناعات المختلفة.", # Highly relevant
48
- "نماذج التعلم الآلي يمكنها التعرف على الأنماط في مجموعات البيانات الكبيرة.", # Moderately relevant
49
- "الذكاء الاصطناعي يساعد الأطباء في تحليل الصور الطبية بشكل أفضل.", # Somewhat relevant
50
- "تستخدم الحيوانات التمويه كوسيلة للهروب من الحيوانات المفترسة.", # Irrelevant
51
- ]
52
-
53
- # Create pairs of (query, candidate) for each candidate
54
- query_candidate_pairs = [(query, candidate) for candidate in candidates]
55
-
56
- # Get relevance scores from the model
57
- scores = model.predict(query_candidate_pairs)
58
-
59
- # Combine candidates with their scores and sort them by score in descending order (higher score = higher relevance)
60
- ranked_candidates = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)
61
-
62
- # Output the ranked candidates with their scores
63
- print("Ranked candidates based on relevance to the query:")
64
- for i, (candidate, score) in enumerate(ranked_candidates, 1):
65
- print(f"Rank {i}:")
66
- print(f"Candidate: {candidate}")
67
- print(f"Score: {score}\n")
68
- ```
69
- ## Evaluation
70
- ### Dataset
71
-
72
- Size: 3000 samples.
73
-
74
- ### Structure:
75
- 🔸 Query: A string representing the user's question.
76
-
77
- 🔸 Candidate Document: A candidate passage to answer the query.
78
-
79
- 🔸 Relevance Label: Binary label (1 for relevant, 0 for irrelevant).
80
-
81
- ### Evaluation Process
82
-
83
- 🔸 Query Grouping: Queries are grouped to evaluate the model's ability to rank candidate documents correctly for each query.
84
-
85
- 🔸 Model Prediction: Each model predicts relevance scores for all candidate documents corresponding to a query.
86
-
87
- 🔸 Metrics Calculation: Metrics are computed to measure how well the model ranks relevant documents higher than irrelevant ones.
88
-
89
- | Model | MRR | MAP | nDCG@10 |
90
- |-------------------------------------------|------------------|------------------|------------------|
91
- | cross-encoder/ms-marco-MiniLM-L-6-v2 | 0.631 | 0.6313| 0.725 |
92
- | cross-encoder/ms-marco-MiniLM-L-12-v2 | 0.664 | 0.664 | 0.750 |
93
- | BAAI/bge-reranker-v2-m3 | 0.902 | 0.902 | 0.927 |
94
- | Omartificial-Intelligence-Space/ARA-Reranker-V1 | **0.934** | **0.9335** | **0.951** |
95
-
96
-
97
-
98
- ## <span style="color:blue">Acknowledgments</span>
99
-
100
- The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.
101
-
102
-
103
- ```markdown
104
- ## Citation
105
-
106
- If you use the GATE, please cite it as follows:
107
-
108
- @misc{nacar2025ARM,
109
- title={ARM, Arabic Reranker Model},
110
- author={Omer Nacar},
111
- year={2025},
112
- url={https://huggingface.co/Omartificial-Intelligence-Space/ARA-Reranker-V1},
113
- }
114
-
115
-
116
-
117
-