--- license: apache-2.0 language: - ar pipeline_tag: text-classification tags: - transformers - sentence-transformers - text-embeddings-inference --- # Introducing ARM-V1 | Arabic Reranker Model (Version 1) **For more info please refer to this blog: [ARM | Arabic Reranker Model](www.omarai.me).** ✨ This model is designed specifically for Arabic language reranking tasks, optimized to handle queries and passages with precision. ✨ Unlike embedding models, which generate vector representations, this reranker directly evaluates the similarity between a question and a document, outputting a relevance score. ✨ Trained on a combination of positive and hard negative query-passage pairs, it excels in identifying the most relevant results. ✨ The output score can be transformed into a [0, 1] range using a sigmoid function, providing a clear and interpretable measure of relevance. ## Arabic RAG Pipeline ![Arabic RAG Pipeline](https://i.ibb.co/z4Fc3Kd/Screenshot-2024-11-28-at-10-17-39-AM.png) ## Usage ### Using sentence-transformers ``` pip install sentence-transformers ``` ```python from sentence_transformers import CrossEncoder # Load the cross-encoder model # Define a query and a set of candidates with varying degrees of relevance query = "تطبيقات الذكاء الاصطناعي تُستخدم في مختلف المجالات لتحسين الكفاءة." # Candidates with varying relevance to the query candidates = [ "الذكاء الاصطناعي يساهم في تحسين الإنتاجية في الصناعات المختلفة.", # Highly relevant "نماذج التعلم الآلي يمكنها التعرف على الأنماط في مجموعات البيانات الكبيرة.", # Moderately relevant "الذكاء الاصطناعي يساعد الأطباء في تحليل الصور الطبية بشكل أفضل.", # Somewhat relevant "تستخدم الحيوانات التمويه كوسيلة للهروب من الحيوانات المفترسة.", # Irrelevant ] # Create pairs of (query, candidate) for each candidate query_candidate_pairs = [(query, candidate) for candidate in candidates] # Get relevance scores from the model scores = model.predict(query_candidate_pairs) # Combine candidates with their scores and sort them by score in descending order (higher score = higher relevance) ranked_candidates = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True) # Output the ranked candidates with their scores print("Ranked candidates based on relevance to the query:") for i, (candidate, score) in enumerate(ranked_candidates, 1): print(f"Rank {i}:") print(f"Candidate: {candidate}") print(f"Score: {score}\n") ``` ## Evaluation ### Dataset Size: 3000 samples. ### Structure: 🔸 Query: A string representing the user's question. 🔸 Candidate Document: A candidate passage to answer the query. 🔸 Relevance Label: Binary label (1 for relevant, 0 for irrelevant). ### Evaluation Process 🔸 Query Grouping: Queries are grouped to evaluate the model's ability to rank candidate documents correctly for each query. 🔸 Model Prediction: Each model predicts relevance scores for all candidate documents corresponding to a query. 🔸 Metrics Calculation: Metrics are computed to measure how well the model ranks relevant documents higher than irrelevant ones. | Model | MRR | MAP | nDCG@10 | |-------------------------------------------|------------------|------------------|------------------| | cross-encoder/ms-marco-MiniLM-L-6-v2 | 0.631 | 0.6313| 0.725 | | cross-encoder/ms-marco-MiniLM-L-12-v2 | 0.664 | 0.664 | 0.750 | | BAAI/bge-reranker-v2-m3 | 0.902 | 0.902 | 0.927 | | Omartificial-Intelligence-Space/ARA-Reranker-V1 | **0.934** | **0.9335** | **0.951** | ## Acknowledgments The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models. ```markdown ## Citation If you use the GATE, please cite it as follows: @misc{nacar2025ARM, title={ARM, Arabic Reranker Model}, author={Omer Nacar}, year={2025}, url={https://huggingface.co/Omartificial-Intelligence-Space/ARA-Reranker-V1}, }