File size: 3,578 Bytes
00ad9ea
498f016
 
 
 
 
99dbdda
 
 
bf0db12
 
 
 
 
00ad9ea
498f016
3ec547b
 
498f016
 
 
3ec547b
498f016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec547b
498f016
3ec547b
 
 
 
498f016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec547b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity

widget:
- source_sentence: "what components are vulnerable to fatigue crack?"
  sentences:
    - "One of the first-stage compressor blades had fractued due to fatigue cracking."
    - "Witnesses and the fire department personnel noted fuel leaking due to a cracked fuel line."
    - "During periods of low visibility and night conditions, the supporting sensors sometimes conflict."
  example_title: "Fatigue Crack Query"
---

# Manager for Intelligent Knowledge Access (MIKA)
# Custom Information Retrieval Model

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

The model is custom trained on engineering documents for asymmetric infromation retrieval. It is intended to be used to identify engineering documents relevant to a query for use in design time. For example, a repository can be queried to find support for requirements or learn more about a specific type of failure.

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```



## Evaluation Results

This model was evaluated on three queries using precision at k for k=10,20, and 30. Mean average precision (MAP) was also calculated. The model was baselines against the pre-trained SBERT.

|IR Method | MAP |
|----------|-----|
|Pre-trained sBERT| 0.648|
|Fine-tuned sBERT| 0.807|

## Training
The model was trained with the parameters:

**DataLoader**:

`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 693 with parameters:
```
{'batch_size': 32}
```

**Loss**:

`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 2,
    "evaluation_steps": 100,
    "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 0,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)
```

## Citing & Authors

Walsh, HS, & Andrade, SR. "Semantic Search With Sentence-BERT for Design Information Retrieval." Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 42nd Computers and Information in Engineering Conference (CIE). St. Louis, Missouri, USA. August 14–17, 2022. V002T02A066. ASME. https://doi.org/10.1115/DETC2022-89557