--- license: mit library_name: peft tags: - generated_from_trainer base_model: VietAI/vit5-base metrics: - rouge model-index: - name: TaiDepZai999-UIT-Vit5 results: [] --- # TaiDepZai999-UIT-Vit5 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 26.7447 - Rouge1: 10.0592 - Rouge2: 4.8665 - Rougel: 8.6097 - Rougelsum: 8.6121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 221 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|:---------:| | No log | 0.9968 | 78 | 29.6912 | 10.6188 | 5.0941 | 9.0232 | 9.0244 | | No log | 1.9936 | 156 | 28.8059 | 10.5140 | 5.0396 | 8.9231 | 8.9360 | | No log | 2.9904 | 234 | 26.7447 | 10.0592 | 4.8665 | 8.6097 | 8.6121 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1