--- base_model: [] library_name: transformers tags: - mergekit - merge - not-for-all-audiences --- ![](eemaid.png) # Eclectic-Maid-7B-v2 This model is much better over original model, I believe. The recipes are not exact below but at least you get an idea of what models are involved. This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details See Below ### Merge Method This model was merged using the passthrough merge method. ### Models Merged See Below ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: "Maid-Reborn-v22-10B" layer_range: [0, 16] - sources: - model: "Maid-Reborn-v22-10B" layer_range: [8, 24] - sources: - model: "Maid-Reborn-v22-10B" layer_range: [17, 32] merge_method: passthrough dtype: float16 ``` ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: cognitivecomputations/WestLake-7B-v2-laser parameters: density: 0.58 weight: [0.3877, 0.1636, 0.186, 0.0502] - model: senseable/garten2-7b parameters: density: 0.58 weight: [0.234, 0.2423, 0.2148, 0.2775] - model: berkeley-nest/Starling-LM-7B-alpha parameters: density: 0.58 weight: [0.1593, 0.1573, 0.1693, 0.3413] - model: mlabonne/AlphaMonarch-7B parameters: density: 0.58 weight: [0.219, 0.4368, 0.4299, 0.331] merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 name: Maid-Reborn-v22 ``` ```yaml models: - model: mistralai/Mistral-7B-Instruct-v0.2 # no parameters necessary for base model - model: xDAN-AI/xDAN-L1-Chat-RL-v1 parameters: weight: 0.4 density: 0.8 - model: Undi95/BigL-7B parameters: weight: 0.3 density: 0.8 - model: SanjiWatsuki/Loyal-Toppy-Bruins-Maid-7B-DARE parameters: weight: 0.2 density: 0.4 - model: NeverSleep/Noromaid-7B-0.4-DPO parameters: weight: 0.2 density: 0.4 - model: NSFW_DPO_Noromaid-7B-v2 parameters: weight: 0.2 density: 0.4 merge_method: dare_ties base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: int8_mask: true dtype: bfloat16 ```